(15 intermediate revisions by 6 users not shown)
Line 1: Line 1:
[http://balthier.ecn.purdue.edu/index.php/ECE662 ECE662 Main Page]
+
=Lecture 7, [[ECE662]]: Decision Theory=
  
[http://balthier.ecn.purdue.edu/index.php/ECE662#Class_Lecture_Notes Class Lecture Notes]
+
Lecture notes for [[ECE662:BoutinSpring08_Old_Kiwi|ECE662 Spring 2008]], Prof. [[user:mboutin|Boutin]].
  
== Lecture Objective ==
+
Other lectures: [[Lecture 1 - Introduction_Old Kiwi|1]],
 +
[[Lecture 2 - Decision Hypersurfaces_Old Kiwi|2]],
 +
[[Lecture 3 - Bayes classification_Old Kiwi|3]],
 +
[[Lecture 4 - Bayes Classification_Old Kiwi|4]],
 +
[[Lecture 5 - Discriminant Functions_Old Kiwi|5]],
 +
[[Lecture 6 - Discriminant Functions_Old Kiwi|6]],
 +
[[Lecture 7 - MLE and BPE_Old Kiwi|7]],
 +
[[Lecture 8 - MLE, BPE and Linear Discriminant Functions_Old Kiwi|8]],
 +
[[Lecture 9 - Linear Discriminant Functions_Old Kiwi|9]],
 +
[[Lecture 10 - Batch Perceptron and Fisher Linear Discriminant_Old Kiwi|10]],
 +
[[Lecture 11 - Fischer's Linear Discriminant again_Old Kiwi|11]],
 +
[[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_Old Kiwi|12]],
 +
[[Lecture 13 - Kernel function for SVMs and ANNs introduction_Old Kiwi|13]], 
 +
[[Lecture 14 - ANNs, Non-parametric Density Estimation (Parzen Window)_Old Kiwi|14]],
 +
[[Lecture 15 - Parzen Window Method_Old Kiwi|15]],
 +
[[Lecture 16 - Parzen Window Method and K-nearest Neighbor Density Estimate_Old Kiwi|16]],
 +
[[Lecture 17 - Nearest Neighbors Clarification Rule and Metrics_Old Kiwi|17]],
 +
[[Lecture 18 - Nearest Neighbors Clarification Rule and Metrics(Continued)_Old Kiwi|18]],
 +
[[Lecture 19 - Nearest Neighbor Error Rates_Old Kiwi|19]],
 +
[[Lecture 20 - Density Estimation using Series Expansion and Decision Trees_Old Kiwi|20]],
 +
[[Lecture 21 - Decision Trees(Continued)_Old Kiwi|21]],
 +
[[Lecture 22 - Decision Trees and Clustering_Old Kiwi|22]],
 +
[[Lecture 23 - Spanning Trees_Old Kiwi|23]],
 +
[[Lecture 24 - Clustering and Hierarchical Clustering_Old Kiwi|24]],
 +
[[Lecture 25 - Clustering Algorithms_Old Kiwi|25]],
 +
[[Lecture 26 - Statistical Clustering Methods_Old Kiwi|26]],
 +
[[Lecture 27 - Clustering by finding valleys of densities_Old Kiwi|27]],
 +
[[Lecture 28 - Final lecture_Old Kiwi|28]],
 +
----
 +
----
 +
== Lecture Content ==
  
 
* Maximum Likelihood Estimation and Bayesian Parameter Estimation
 
* Maximum Likelihood Estimation and Bayesian Parameter Estimation
 
* Parametric Estimation of Class Conditional Density
 
* Parametric Estimation of Class Conditional Density
  
See also: [[Comparison of MLE and Bayesian Parameter Estimation_Old Kiwi]]
+
== Relevant Links==
 
+
*MLE: [[Maximum Likelihood Estimation_Old Kiwi| Maximum Likelihood Estimation]]
 +
**[[MLE Examples: Exponential and Geometric Distributions_Old Kiwi|Examples of MLE: Exponential and Geometric Distributions ]]
 +
**[[MLE Examples: Binomial and Poisson Distributions_Old Kiwi|Examples of MLE: Binomial and Poisson Distributions]]
 +
*BPE: [[Bayesian Parameter Estimation_Old Kiwi|Bayesian Parameter Estimation]]
 +
*[[Comparison of MLE and Bayesian Parameter Estimation_Old Kiwi|Comparison of MLE and Bayesian Parameter Estimation]]
 +
*[[Parametric Estimators_Old Kiwi|Parametric Estimators]]
 +
----
 +
-----
 
The class conditional density <math>p(\vec{x}|w_i)</math> can be estimated using training data. We denote the parameter of estimation as <math>\vec{\theta}</math>. There are two methods of estimation discussed.
 
The class conditional density <math>p(\vec{x}|w_i)</math> can be estimated using training data. We denote the parameter of estimation as <math>\vec{\theta}</math>. There are two methods of estimation discussed.
  
MLE ([Maximum Likelihood Estimation])
+
MLE: [[Maximum Likelihood Estimation_Old Kiwi| Maximum Likelihood Estimation]]
  
BPE ([Bayesian Parameter Estimation])
+
BPE: [[Bayesian Parameter Estimation_Old Kiwi|Bayesian Parameter Estimation]]
  
  
Line 29: Line 66:
 
<math>p(\vec{X}|\omega_i,\vec{\theta_i})</math> equals <math>p(\vec{X}|\vec{\theta})</math> for a single class.
 
<math>p(\vec{X}|\omega_i,\vec{\theta_i})</math> equals <math>p(\vec{X}|\vec{\theta})</math> for a single class.
  
The **Likelihood Function** is, then, defined as <math>p(D|\vec{\theta})=\displaystyle \prod_{k=1}^n p(\vec{X_k}|\vec{\theta})</math>,
+
The ''Likelihood Function'' is, then, defined as <math>p(D|\vec{\theta})=\displaystyle \prod_{k=1}^n p(\vec{X_k}|\vec{\theta})</math>,
 
which needs to be maximized for obtaining the parameter.
 
which needs to be maximized for obtaining the parameter.
  
.. |loglikelihood1| image:: tex
 
:alt: tex: l(\vec{\theta})=log p(D|\vec{\theta})=\displaystyle log(\prod_{k=1}^n p(\vec{X_k}|\vec{\theta}))=\displaystyle \sum_{k=1}^n log(p(\vec{X_k}|\vec{\theta}))
 
  
 
Since logarithm is a monotonic function, maximizing the Likelihood is same as maximizing log of Likelihood which is defined as
 
Since logarithm is a monotonic function, maximizing the Likelihood is same as maximizing log of Likelihood which is defined as
Line 48: Line 83:
 
Let <math>\vec{\theta} = \left[ \theta_1, \theta_2, \cdots , \theta_p \right]</math> be 1 by p vector, then
 
Let <math>\vec{\theta} = \left[ \theta_1, \theta_2, \cdots , \theta_p \right]</math> be 1 by p vector, then
  
<math>\nabla_{\vec{\theta}} = \left[ \frac{\partial}{\partial\theta_1} \\ \frac{\partial}{\partial\theta_2} \\ \cdots \\ \frac{\partial}{\partial\theta_p} \right]^{t}</math>
+
<math>\nabla_{\vec{\theta}} = \left[ \frac{\partial}{\partial\theta_1} \frac{\partial}{\partial\theta_2} \cdots \frac{\partial}{\partial\theta_p} \right]^{t}</math>
  
 
Then, we can compute the first derivatives of log likelyhood function,
 
Then, we can compute the first derivatives of log likelyhood function,
Line 57: Line 92:
  
 
<math>\rightarrow \nabla_{\vec{\theta}} ( l (\vec{\theta}) ) = 0</math>
 
<math>\rightarrow \nabla_{\vec{\theta}} ( l (\vec{\theta}) ) = 0</math>
 
  
 
== Example of Guassian case ==
 
== Example of Guassian case ==
  
Assume that covariance matrix are know.
+
Assume that covariance matrix are known.
  
 
<math>p(\vec{x_k} | \vec{\mu}) = \frac{1}{ \left( (2\pi)^{d} |\Sigma| \right)^{\frac{1}{2}}} exp \left[ - \frac{1}{2} (\vec{x_k} - \vec{\mu})^{t} \Sigma^{-1} (\vec{x_k} - \vec{\mu}) \right]</math>
 
<math>p(\vec{x_k} | \vec{\mu}) = \frac{1}{ \left( (2\pi)^{d} |\Sigma| \right)^{\frac{1}{2}}} exp \left[ - \frac{1}{2} (\vec{x_k} - \vec{\mu})^{t} \Sigma^{-1} (\vec{x_k} - \vec{\mu}) \right]</math>
Line 85: Line 119:
 
This is the sample mean for a sample size n.
 
This is the sample mean for a sample size n.
  
[[MLE Examples: Exponential and Geometric Distributions_Old Kiwi]]
+
[[MLE Examples: Exponential and Geometric Distributions_Old Kiwi|Examples of MLE: Exponential and Geometric Distributions ]]
  
[[MLE Examples: Binomial and Poisson Distributions_Old Kiwi]]
+
[[MLE Examples: Binomial and Poisson Distributions_Old Kiwi|Examples of MLE: Binomial and Poisson Distributions]]
  
 
'''Advantages of MLE:'''
 
'''Advantages of MLE:'''
Line 93: Line 127:
 
* Converges
 
* Converges
 
* Asymptotically unbiased (though biased for small N)
 
* Asymptotically unbiased (though biased for small N)
 
  
 
== Bayesian Parameter Estimation ==
 
== Bayesian Parameter Estimation ==
  
 
For a given class,
 
For a given class,
let <math>\bf{x}</math> be feature vector of the class and <math>\bf{ \theta }</math> be parameter of pdf of <math>\bf{x}</math> to be estimated.
+
let <b><math>x</math></b> be feature vector of the class and <b><math>\theta</math></b> be parameter of pdf of <b><math>x</math></b> to be estimated.
  
And let <math>D= \{  \mathbf{x}_1, \mathbf{x}_2, \cdots , \mathbf{x}_n \} \\</math>
+
And let <b><math>D= \{  x_1, x_2, \cdots, x_n \} </math></b>
, where <math>\bf{x}</math> are training samples of the class
+
, where <b><math>x</math></b> are training samples of the class
  
Note that <math>\bf{ \theta }</math> is random variable with probability density <math>p( \bf { \theta } )</math>
+
Note that <b><math>\theta</math></b> is random variable with probability density <b><math>p(\theta)</math></b>
  
 
[[Image:Equation1_Old Kiwi.png]]
 
[[Image:Equation1_Old Kiwi.png]]
Line 110: Line 143:
  
 
[[Image:Equation2_Old Kiwi.png]]
 
[[Image:Equation2_Old Kiwi.png]]
 
'''Here is a good example:'''
 
http://www-ccrma.stanford.edu/~jos/bayes/Bayesian_Parameter_Estimation.html
 
 
 
  
 
== EXAMPLE: Bayesian Inference for Gaussian Mean ==
 
== EXAMPLE: Bayesian Inference for Gaussian Mean ==
Line 145: Line 173:
  
 
The above figure illustrates the Bayesian inference for the mean of a Gaussian distribution, for which the variance is assumed to be known. The curves show the prior distribution over 'mu' (the curve labeled N=0), which in this case is itself Gaussian, along with the posterior distributions for increasing number N of data points. The figure makes clear that as the number of data points increase, the posterior distribution peaks around the true value of the mean. This phenomenon is known as *Bayesian learning*.
 
The above figure illustrates the Bayesian inference for the mean of a Gaussian distribution, for which the variance is assumed to be known. The curves show the prior distribution over 'mu' (the curve labeled N=0), which in this case is itself Gaussian, along with the posterior distributions for increasing number N of data points. The figure makes clear that as the number of data points increase, the posterior distribution peaks around the true value of the mean. This phenomenon is known as *Bayesian learning*.
 +
----
 +
----
 +
==For more information==
  
'''For more information:'''
+
*MLE: [[Maximum Likelihood Estimation_Old Kiwi| Maximum Likelihood Estimation]]
 +
**[[MLE Examples: Exponential and Geometric Distributions_Old Kiwi|Examples of MLE: Exponential and Geometric Distributions ]]
 +
**[[MLE Examples: Binomial and Poisson Distributions_Old Kiwi|Examples of MLE: Binomial and Poisson Distributions]]
 +
*BPE: [[Bayesian Parameter Estimation_Old Kiwi|Bayesian Parameter Estimation]]
 +
*[[Comparison of MLE and Bayesian Parameter Estimation_Old Kiwi|Comparison of MLE and Bayesian Parameter Estimation]]
 +
*[[Parametric Estimators_Old Kiwi|Parametric Estimators]]
 +
----
 +
[[ECE662:BoutinSpring08_Old_Kiwi|Back to ECE662, Spring 2008, Prof. Boutin]]
  
[[Parametric Estimators_Old Kiwi]]
+
[[Category:lecture notes]]

Latest revision as of 10:16, 20 May 2013

Lecture 7, ECE662: Decision Theory

Lecture notes for ECE662 Spring 2008, Prof. Boutin.

Other lectures: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,



Lecture Content

  • Maximum Likelihood Estimation and Bayesian Parameter Estimation
  • Parametric Estimation of Class Conditional Density

Relevant Links



The class conditional density $ p(\vec{x}|w_i) $ can be estimated using training data. We denote the parameter of estimation as $ \vec{\theta} $. There are two methods of estimation discussed.

MLE: Maximum Likelihood Estimation

BPE: Bayesian Parameter Estimation


Maximum Likelihood Estimation

Let "c" denote the number of classes. D, the entire collection of sample data. $ D_1, \ldots, D_c $ represent the classification of data into classes $ \omega_1, \ldots, \omega_c $. It is assumed that: - Samples in $ D_i $ give no information about the samples in $ D_j, i \neq j $, and - Each sample is drawn independently.

Example: The class conditional density $ p(\vec{x}|w_i) $ depends on parameter $ \vec{\theta_i} $. If $ X ~ N(\mu,\sigma^2) $ denotes the class conditional density; then $ \vec{\theta}=[\mu,\sigma^2] $.

Let n be the size of training sample, and $ D=\{\vec{X_1}, \ldots, \vec{X_n}\} $. Then,

$ p(\vec{X}|\omega_i,\vec{\theta_i}) $ equals $ p(\vec{X}|\vec{\theta}) $ for a single class.

The Likelihood Function is, then, defined as $ p(D|\vec{\theta})=\displaystyle \prod_{k=1}^n p(\vec{X_k}|\vec{\theta}) $, which needs to be maximized for obtaining the parameter.


Since logarithm is a monotonic function, maximizing the Likelihood is same as maximizing log of Likelihood which is defined as $ l(\vec{\theta})=log p(D|\vec{\theta})=\displaystyle log(\prod_{k=1}^n p(\vec{X_k}|\vec{\theta}))=\displaystyle \sum_{k=1}^n log(p(\vec{X_k}|\vec{\theta})) $.

"l" is the log likelihood function.

Maximize log likelyhood function with respect to $ \vec{\theta} $

$ \rightarrow \hat{\theta} = argmax \left( l (\vec{\theta}) \right) $

If $ l(\vec{\theta}) $ is a differentiable function

Let $ \vec{\theta} = \left[ \theta_1, \theta_2, \cdots , \theta_p \right] $ be 1 by p vector, then

$ \nabla_{\vec{\theta}} = \left[ \frac{\partial}{\partial\theta_1} \frac{\partial}{\partial\theta_2} \cdots \frac{\partial}{\partial\theta_p} \right]^{t} $

Then, we can compute the first derivatives of log likelyhood function,

$ \rightarrow \nabla_{\vec{\theta}} ( l (\vec{\theta}) ) = \sum_{k=1}^{n} \nabla_{\vec{\theta}} \left[ log(p(\vec{x_k} | \vec{\theta})) \right] $

and equate this first derivative to be zero

$ \rightarrow \nabla_{\vec{\theta}} ( l (\vec{\theta}) ) = 0 $

Example of Guassian case

Assume that covariance matrix are known.

$ p(\vec{x_k} | \vec{\mu}) = \frac{1}{ \left( (2\pi)^{d} |\Sigma| \right)^{\frac{1}{2}}} exp \left[ - \frac{1}{2} (\vec{x_k} - \vec{\mu})^{t} \Sigma^{-1} (\vec{x_k} - \vec{\mu}) \right] $

Step 1: Take log

$ log p(\vec{x_k} | \vec{\mu}) = -\frac{1}{2} log \left( (2\pi)^d |\Sigma| \right) - \frac{1}{2} (\vec{x_k} - \vec{\mu})^{t} \Sigma^{-1} (\vec{x_k} - \vec{\mu}) $

Step 2: Take derivative

$ \frac{\partial}{\partial\vec{\mu}} \left( log p(\vec{x_k} | \vec{\mu}) \right) = \frac{1}{2} \left[ (\vec{x_k} - \vec{\mu})^t \Sigma^{-1}\right]^t + \frac{1}{2} \left[ \Sigma^{-1} (\vec{x_k} - \vec{\mu}) \right] = \Sigma^{-1} (\vec{x_k} - \vec{\mu}) $

Step 3: Equate to 0

$ \sum_{k=1}^{n} \Sigma^{-1} (\vec{x_k} - \vec{\mu}) = 0 $

$ \rightarrow \Sigma^{-1} \sum_{k=1}^{n} (\vec{x_k} - \vec{\mu}) = 0 $

$ \rightarrow \Sigma^{-1} \left[ \sum_{k=1}^{n} \vec{x_k} - n \vec{\mu}\right] = 0 $

$ \Longrightarrow \hat{\vec{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \vec{x_k} $

This is the sample mean for a sample size n.

Examples of MLE: Exponential and Geometric Distributions

Examples of MLE: Binomial and Poisson Distributions

Advantages of MLE:

  • Simple
  • Converges
  • Asymptotically unbiased (though biased for small N)

Bayesian Parameter Estimation

For a given class, let $ x $ be feature vector of the class and $ \theta $ be parameter of pdf of $ x $ to be estimated.

And let $ D= \{ x_1, x_2, \cdots, x_n \} $ , where $ x $ are training samples of the class

Note that $ \theta $ is random variable with probability density $ p(\theta) $

Equation1 Old Kiwi.png

where

Equation2 Old Kiwi.png

EXAMPLE: Bayesian Inference for Gaussian Mean

The univariate case. The variance is assumed to be known.

Here's a summary of results:

  • Univariate Gaussian density $ p(x|\mu)\sim N(\mu,\sigma^{2}) $
  • Prior density of the mean $ p(\mu)\sim N(\mu_{0},\sigma_{0}^{2}) $
  • Posterior density of the mean $ p(\mu|D)\sim N(\mu_{n},\sigma_{n}^{2}) $

where

  • $ \mu_{n}=\left(\frac{n\sigma_{0}^{2}}{n\sigma_{0}^{2}+\sigma^{2}}\right)\hat{\mu}_{n}+\frac{\sigma^{2}}{n\sigma_{0}^{2}+\sigma^{2}}\mu_{0} $
  • $ \sigma_{n}^{2}=\frac{\sigma_{0}^{2}\sigma^{2}}{n\sigma_{0}^{2}+\sigma^{2}} $
  • $ \hat{\mu}_{n}=\frac{1}{n}\sum_{k=1}^{n}x_{k} $

Finally, the class conditional density is given by $ p(x|D)\sim N(\mu_{n},\sigma^{2}+\sigma_{n}^{2}) $

The above formulas can be interpreted as: in making prediction for a single new observation, the variance of the estimate will have two components: 1) $ \sigma^{2} $ - the inherent variance within the distribution of x, i.e. the variance that would never be eliminated even with perfect information about the underlying distribution model; 2) $ \sigma_{n}^{2} $ - the variance introduced from the estimation of the mean vector "mu", this component can be eliminated given exact prior information or very large training set ( N goes to infinity);

BayesianInference GaussianMean small Old Kiwi.jpg

The above figure illustrates the Bayesian inference for the mean of a Gaussian distribution, for which the variance is assumed to be known. The curves show the prior distribution over 'mu' (the curve labeled N=0), which in this case is itself Gaussian, along with the posterior distributions for increasing number N of data points. The figure makes clear that as the number of data points increase, the posterior distribution peaks around the true value of the mean. This phenomenon is known as *Bayesian learning*.



For more information


Back to ECE662, Spring 2008, Prof. Boutin

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics