(Algorithms for clustering from feature vector)
 
(14 intermediate revisions by 5 users not shown)
Line 1: Line 1:
==Clustering Methods==
+
=Lecture 25, [[ECE662]]: Decision Theory=
  
 +
Lecture notes for [[ECE662:BoutinSpring08_Old_Kiwi|ECE662 Spring 2008]], Prof. [[user:mboutin|Boutin]].
  
 +
Other lectures: [[Lecture 1 - Introduction_Old Kiwi|1]],
 +
[[Lecture 2 - Decision Hypersurfaces_Old Kiwi|2]],
 +
[[Lecture 3 - Bayes classification_Old Kiwi|3]],
 +
[[Lecture 4 - Bayes Classification_Old Kiwi|4]],
 +
[[Lecture 5 - Discriminant Functions_Old Kiwi|5]],
 +
[[Lecture 6 - Discriminant Functions_Old Kiwi|6]],
 +
[[Lecture 7 - MLE and BPE_Old Kiwi|7]],
 +
[[Lecture 8 - MLE, BPE and Linear Discriminant Functions_Old Kiwi|8]],
 +
[[Lecture 9 - Linear Discriminant Functions_Old Kiwi|9]],
 +
[[Lecture 10 - Batch Perceptron and Fisher Linear Discriminant_Old Kiwi|10]],
 +
[[Lecture 11 - Fischer's Linear Discriminant again_Old Kiwi|11]],
 +
[[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_Old Kiwi|12]],
 +
[[Lecture 13 - Kernel function for SVMs and ANNs introduction_Old Kiwi|13]], 
 +
[[Lecture 14 - ANNs, Non-parametric Density Estimation (Parzen Window)_Old Kiwi|14]],
 +
[[Lecture 15 - Parzen Window Method_Old Kiwi|15]],
 +
[[Lecture 16 - Parzen Window Method and K-nearest Neighbor Density Estimate_Old Kiwi|16]],
 +
[[Lecture 17 - Nearest Neighbors Clarification Rule and Metrics_Old Kiwi|17]],
 +
[[Lecture 18 - Nearest Neighbors Clarification Rule and Metrics(Continued)_Old Kiwi|18]],
 +
[[Lecture 19 - Nearest Neighbor Error Rates_Old Kiwi|19]],
 +
[[Lecture 20 - Density Estimation using Series Expansion and Decision Trees_Old Kiwi|20]],
 +
[[Lecture 21 - Decision Trees(Continued)_Old Kiwi|21]],
 +
[[Lecture 22 - Decision Trees and Clustering_Old Kiwi|22]],
 +
[[Lecture 23 - Spanning Trees_Old Kiwi|23]],
 +
[[Lecture 24 - Clustering and Hierarchical Clustering_Old Kiwi|24]],
 +
[[Lecture 25 - Clustering Algorithms_Old Kiwi|25]],
 +
[[Lecture 26 - Statistical Clustering Methods_Old Kiwi|26]],
 +
[[Lecture 27 - Clustering by finding valleys of densities_Old Kiwi|27]],
 +
[[Lecture 28 - Final lecture_Old Kiwi|28]],
 +
----
 +
----
  
 +
== Clustering Methods - A summary ==
  
==Algorithms for clustering from feature vector==
+
[[Image:summary_Clustering_methods_Old Kiwi.jpg|frame|center|Figure 1]]
  
Called "Partitional clustering" in Jain and Dude as opposed to "hierarchical clustering"
+
Ward's method is supposedly the best. What this means is when there are natural clusters in the dataset, then almost all of above mentioned methods work well, but of them Ward's method works the best.
  
 +
But these methods have a serious shortcoming. They tend to find compact clusters because they depend on distances between data points.
 +
 +
*Illustrating figure can be inserted
 +
 +
So, if the natural clustering in data points is elongated and interspersed, these methods may break one elongated cluster into many, and may mix different elongated clusters into one. So, we need feature vectors to find natural clusters, if they are of arbitrary shape and contain arbitrary number of points.
 +
 +
In a high dimension feature space, data points are never adequate. The space is always sparse, and typically distance between any two data points is of the same order. So, the approach used is to project data onto lower dimensions. It doesn't matter which features or combination of features are used to project, because the objective is to have a indexing mechanism for the database.
 +
 +
[[Image:Lec25_proj_clusters_Old Kiwi.PNG|frame|center|Figure 3]]
 +
 +
== Algorithms for clustering from feature vector ==
 +
 +
Called "Partitional clustering" in Jain and Dude as opposed to "hierarchical clustering"
 
Clustering feature vectors = finding separation between clusters but these are not known
 
Clustering feature vectors = finding separation between clusters but these are not known
 +
 +
Note: "Partitional Clustering" is advantageous in the sense that it provides a set of partition rules that can be generalized to future unseen data. For clustering methods based on pair-wise distance, such rules are not always available.
 +
 +
[[Image:Lec25_clusters_fv_Old Kiwi.PNG|frame|center|Figure 4]]
  
 
<<Picture>>
 
<<Picture>>
Line 94: Line 143:
 
Look at evolution of J for c increase (similarity scale)
 
Look at evolution of J for c increase (similarity scale)
  
<<Picture>>
+
[[Image:Lec25_nat_clusters_J_Old Kiwi.PNG|frame|center|Figure 5]]
  
 
An important J
 
An important J
Line 106: Line 155:
 
* Good  when clusters are compact, well separated
 
* Good  when clusters are compact, well separated
 
* Sensitive to outliers
 
* Sensitive to outliers
 +
 +
[[Image:Lec25_J_criterion_Old Kiwi.PNG|frame|center|Figure 6]]
  
 
<math>J=\sum _{j=1} ^{c} \sum _{X_i \in S_j} ||X_i - \mu_j||_{L1}</math> is more robust to outliers
 
<math>J=\sum _{j=1} ^{c} \sum _{X_i \in S_j} ||X_i - \mu_j||_{L1}</math> is more robust to outliers
Line 148: Line 199:
  
 
No need for feature vector
 
No need for feature vector
 +
[[Category:Lecture Notes]]

Latest revision as of 08:43, 17 January 2013

Lecture 25, ECE662: Decision Theory

Lecture notes for ECE662 Spring 2008, Prof. Boutin.

Other lectures: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,



Clustering Methods - A summary

Figure 1

Ward's method is supposedly the best. What this means is when there are natural clusters in the dataset, then almost all of above mentioned methods work well, but of them Ward's method works the best.

But these methods have a serious shortcoming. They tend to find compact clusters because they depend on distances between data points.

  • Illustrating figure can be inserted

So, if the natural clustering in data points is elongated and interspersed, these methods may break one elongated cluster into many, and may mix different elongated clusters into one. So, we need feature vectors to find natural clusters, if they are of arbitrary shape and contain arbitrary number of points.

In a high dimension feature space, data points are never adequate. The space is always sparse, and typically distance between any two data points is of the same order. So, the approach used is to project data onto lower dimensions. It doesn't matter which features or combination of features are used to project, because the objective is to have a indexing mechanism for the database.

Figure 3

Algorithms for clustering from feature vector

Called "Partitional clustering" in Jain and Dude as opposed to "hierarchical clustering" Clustering feature vectors = finding separation between clusters but these are not known

Note: "Partitional Clustering" is advantageous in the sense that it provides a set of partition rules that can be generalized to future unseen data. For clustering methods based on pair-wise distance, such rules are not always available.

Figure 4

<<Picture>>

We have a set of points S Want to find subsets $ S_1 , S_2 , \cdots , S_c $ such that $ S=S_1 \cup S_2 \cup \cdots \cup S_c $ and $ S_i \cap S_j = \phi $

need to define "clustering criteria" i.e., a measure of how natural the clustering is.

if c=2,

consider

$ J=tr(S_m ^{-1} S_w) $

where $ S_w $ is "within class scatter matrix"

$ S_w= \sum _{i=1, X_i \in S_1} ^d ||X_i - \mu _1||^2 + \sum _{i=1, X_i \in S_2} ^d ||X_i - \mu _2||^2 $ (2-1)

$ \mu _1 = \frac{1}{|S_1|} \sum _{X_i \in S_1} X_i $, $ \mu _2 = \frac{1}{|S_2|} \sum _{X_i \in S_2} X_i $ (2-2)

$ S_m $ is "mixture scatter matrix"

$ S_m= \sum _{i=1} ^d ||X_i - \mu||^2 $, $ \mu = \frac{1}{d} \sum _{i=1} ^{d} X_i $ (2-3)

Try to find $ S_1 $ and $ S_2 $ that minimize J.

Exhaustive search procedure

Examnple with 6 pattern $ X_1 , X_2 , \cdots , X_6 $

List all partition of 6 points into 2 sets.

<<Someting>>


Evaluate J for each partition

Cansider other J's

$ J=ln|S_m ^{-1} S_w| $ (2-4)

$ J=tr (S_m) - \mu (tr S_w -c) $ (2-5)

C is fixed constant, $ \mu $ : Largrange multiplier

$ J=\frac{tr(S_m)}{tr(S_w)} $ (2-6)

To speed up search "use iterative procedure"

Pick a partition at random

$ S_1={X_1, X_2, X_3}, S_2= {X_4, X_5, X_6} $ (2-7)

Compute J

Consider effect of moving

$ X_1 $ into $ S_2 \Rightarrow \Delta J_{12} $,

$ X_2 $ into $ S_2 \Rightarrow \Delta J_{22} $,

$ X_3 $ into $ S_3 \Rightarrow \Delta J_{33} $,

$ X_4 $ into $ S_1 \Rightarrow \Delta J_{41} $,

$ X_5 $ into $ S_1 \Rightarrow \Delta J_{51} $,

$ X_6 $ into $ S_1 \Rightarrow \Delta J_{61} $

Apply (Simultaneously) all the moves for which $ \Delta J $ is negative, repeat procedure

OR

Apply the move for which $ \Delta J $ is the most negative repeat procedure

Convergence?

If convergence, global minimum? No idea

If c>2, can use similar procedure

If c is unknown, try c=2,3,4, etc (hierarchical clustering)

Look at evolution of J for c increase (similarity scale)

Figure 5

An important J

"Square error criterion"

$ J=\sum _{j=1} ^{c} \sum _{X_i \in S_j}||X_i - \mu _ j||^2 $ (2-8)

where $ \mu _j = \frac{1}{|S_j|} \sum _{X_i \in S_j} X_i $ (2-9)

  • Good when clusters are compact, well separated
  • Sensitive to outliers
Figure 6

$ J=\sum _{j=1} ^{c} \sum _{X_i \in S_j} ||X_i - \mu_j||_{L1} $ is more robust to outliers

Can use other types of similarity measure

$ S(X_1, X_2)=\frac{X_1 \cdot X_2}{||X_1||||X_2||} $ (2-10)

to speed up optimization of J

Use "Nearest mean reclassification rule"

  • choose initial partition $ S_1, S_2 , \cdots , S_c $ (2-11)
  • calculate $ \mu _1 , \mu _2 , \cdots , \mu _c $
  • reclsssify each $ X_i $ to the class of the nearest mean
  • If cluster have changed, repeat

Note: $ X_i $ class of its nearest mean

is same as choosing the move for $ X_i $ that moves $ \Delta J $ as negative as possible because $ J=\sum _{j=1} ^{c} \sum _{X_i \in S_j} ||X_i - \mu _j||^2 $ (2-12)

If $ X_{io} \in S_{jo} \rightarrow X_{io} \in S_{\bar{j0}} $,

$ J \Rightarrow \sum _{j=1} ^{c} \sum _{X_i \in S_j} ||X_i - \mu_j||^2 - ||X_{io}-\mu _{jo}||^2 + ||X_{io} - \mu _{\bar {jo}}||^2 $ (2-13)

$ \Delta J $ is as negative as possible when $ ||X_{io} - \mu _{\bar {jo}}||^2 $ is $ \begin{smallmatrix} min\\ j \end{smallmatrix} ||X_i -\mu _j||^2 $ (2-14)

Can use FORGY, CLUSTER

Observation

$ J= \cdots = \sum _{j=1} ^c \frac{1}{|S_j|} \sum _{X_i \in S_j , X_k \in S_j} \frac{||X_i-X_k||^2}{2} $ (2-15)

This is a distance based clustering method.

No need for feature vector

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010