(9 intermediate revisions by 5 users not shown)
Line 1: Line 1:
[http://balthier.ecn.purdue.edu/index.php/ECE662 ECE662 Main Page]
+
=Lecture 10, [[ECE662]]: Decision Theory=
  
[http://balthier.ecn.purdue.edu/index.php/ECE662#Class_Lecture_Notes Class Lecture Notes]
+
Lecture notes for [[ECE662:BoutinSpring08_Old_Kiwi|ECE662 Spring 2008]], Prof. [[user:mboutin|Boutin]].
 +
 
 +
Other lectures: [[Lecture 1 - Introduction_Old Kiwi|1]],
 +
[[Lecture 2 - Decision Hypersurfaces_Old Kiwi|2]],
 +
[[Lecture 3 - Bayes classification_Old Kiwi|3]],
 +
[[Lecture 4 - Bayes Classification_Old Kiwi|4]],
 +
[[Lecture 5 - Discriminant Functions_Old Kiwi|5]],
 +
[[Lecture 6 - Discriminant Functions_Old Kiwi|6]],
 +
[[Lecture 7 - MLE and BPE_Old Kiwi|7]],
 +
[[Lecture 8 - MLE, BPE and Linear Discriminant Functions_Old Kiwi|8]],
 +
[[Lecture 9 - Linear Discriminant Functions_Old Kiwi|9]],
 +
[[Lecture 10 - Batch Perceptron and Fisher Linear Discriminant_Old Kiwi|10]],
 +
[[Lecture 11 - Fischer's Linear Discriminant again_Old Kiwi|11]],
 +
[[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_Old Kiwi|12]],
 +
[[Lecture 13 - Kernel function for SVMs and ANNs introduction_Old Kiwi|13]], 
 +
[[Lecture 14 - ANNs, Non-parametric Density Estimation (Parzen Window)_Old Kiwi|14]],
 +
[[Lecture 15 - Parzen Window Method_Old Kiwi|15]],
 +
[[Lecture 16 - Parzen Window Method and K-nearest Neighbor Density Estimate_Old Kiwi|16]],
 +
[[Lecture 17 - Nearest Neighbors Clarification Rule and Metrics_Old Kiwi|17]],
 +
[[Lecture 18 - Nearest Neighbors Clarification Rule and Metrics(Continued)_Old Kiwi|18]],
 +
[[Lecture 19 - Nearest Neighbor Error Rates_Old Kiwi|19]],
 +
[[Lecture 20 - Density Estimation using Series Expansion and Decision Trees_Old Kiwi|20]],
 +
[[Lecture 21 - Decision Trees(Continued)_Old Kiwi|21]],
 +
[[Lecture 22 - Decision Trees and Clustering_Old Kiwi|22]],
 +
[[Lecture 23 - Spanning Trees_Old Kiwi|23]],
 +
[[Lecture 24 - Clustering and Hierarchical Clustering_Old Kiwi|24]],
 +
[[Lecture 25 - Clustering Algorithms_Old Kiwi|25]],
 +
[[Lecture 26 - Statistical Clustering Methods_Old Kiwi|26]],
 +
[[Lecture 27 - Clustering by finding valleys of densities_Old Kiwi|27]],
 +
[[Lecture 28 - Final lecture_Old Kiwi|28]],
 +
----
 +
----
  
 
The perceptron algorithm maps an input to a single binary output value.  For a proof of the Perceptron convergence theorem, see [PerceptronConvergenceTheorem]
 
The perceptron algorithm maps an input to a single binary output value.  For a proof of the Perceptron convergence theorem, see [PerceptronConvergenceTheorem]
Line 7: Line 38:
 
First introduced in [Lecture 9].  The gradient descent algorithm used is discussed in [Lecture 10].
 
First introduced in [Lecture 9].  The gradient descent algorithm used is discussed in [Lecture 10].
  
Gradient Descent
+
__TOC__
======================
+
 
Main article: [Gradient Descent]
+
== Gradient Descent ==
 +
 
 +
Main article: [[Gradient Descent_Old Kiwi]]
  
 
Consider the cost function <math>J_p(\vec{c}) = \sum -\vec{c}y_i</math>, where <math>y_i</math> is the misclassified data.
 
Consider the cost function <math>J_p(\vec{c}) = \sum -\vec{c}y_i</math>, where <math>y_i</math> is the misclassified data.
Line 20: Line 53:
  
 
- Initial guess <math>\vec{c_1}</math>
 
- Initial guess <math>\vec{c_1}</math>
 +
 
- Then, update <math>\vec{c_2} = \vec{c_1} - \eta(1) \nabla J_p(\vec{c})</math>, where <math>\eta(1)</math> is the step size
 
- Then, update <math>\vec{c_2} = \vec{c_1} - \eta(1) \nabla J_p(\vec{c})</math>, where <math>\eta(1)</math> is the step size
  
Line 26: Line 60:
 
( e.g when <math>\eta(k) \nabla J_p(\vec{c}) </math>< threshold )
 
( e.g when <math>\eta(k) \nabla J_p(\vec{c}) </math>< threshold )
  
 
+
== Gradient Descent in the Perceptron Algorithm ==
Gradient Descent in the Perceptron Algorithm
+
* Theorem: If samples are linearly separable, then the "batch [perceptron]" iterative algorithm.  The proof of this theorem, PerceptronConvergenceTheorem, is due to Novikoff (1962).
=================================
+
**Theorem:** If samples are linearly separable, then the "batch [perceptron]" iterative algorithm.  The proof of this theorem, PerceptronConvergenceTheorem, is due to Novikoff (1962).
+
  
 
<math>\vec{c_{k+1}} = \vec{c_k} + cst \sum y_i</math>, where <math>y_i</math> is the misclassified data, terminates after a finite number of steps.
 
<math>\vec{c_{k+1}} = \vec{c_k} + cst \sum y_i</math>, where <math>y_i</math> is the misclassified data, terminates after a finite number of steps.
Line 41: Line 73:
 
The matrix equation has the following form:
 
The matrix equation has the following form:
  
.. image:: equation111.jpg
+
[[Image:equarion111_Old Kiwi.jpg]]
  
 
This can also be written as <math>\vec{Y} \cdot \vec{c} = \vec{b}</math>
 
This can also be written as <math>\vec{Y} \cdot \vec{c} = \vec{b}</math>
Line 53: Line 85:
  
  
== Lectures ==
+
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_1_-_Introduction 1] [http://balthier.ecn.purdue.edu/index.php/Lecture_2_-_Decision_Hypersurfaces 2] [http://balthier.ecn.purdue.edu/index.php/Lecture_3_-_Bayes_classification 3]
+
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_4_-_Bayes_Classification 4] [http://balthier.ecn.purdue.edu/index.php/Lecture_5_-_Discriminant_Functions 5] [http://balthier.ecn.purdue.edu/index.php/Lecture_6_-_Discriminant_Functions 6] [http://balthier.ecn.purdue.edu/index.php/Lecture_7_-_MLE_and_BPE 7] [http://balthier.ecn.purdue.edu/index.php/Lecture_8_-_MLE%2C_BPE_and_Linear_Discriminant_Functions 8] [http://balthier.ecn.purdue.edu/index.php/Lecture_9_-_Linear_Discriminant_Functions 9] [http://balthier.ecn.purdue.edu/index.php/Lecture_10_-_Batch_Perceptron_and_Fisher_Linear_Discriminant 10] [http://balthier.ecn.purdue.edu/index.php/Lecture_11_-_Fischer%27s_Linear_Discriminant_again 11] [http://balthier.ecn.purdue.edu/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem 12] [http://balthier.ecn.purdue.edu/index.php/Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction 13] [http://balthier.ecn.purdue.edu/index.php/Lecture_14_-_ANNs%2C_Non-parametric_Density_Estimation_%28Parzen_Window%29 14] [http://balthier.ecn.purdue.edu/index.php/Lecture_15_-_Parzen_Window_Method 15] [http://balthier.ecn.purdue.edu/index.php/Lecture_16_-_Parzen_Window_Method_and_K-nearest_Neighbor_Density_Estimate 16] [http://balthier.ecn.purdue.edu/index.php/Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics 17] [http://balthier.ecn.purdue.edu/index.php/Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics%28Continued%29 18]
+
==Fischer's Linear Discriminant==
 +
 
 +
Main article: [[Fisher Linear Discriminant_Old Kiwi]]
 +
 
 +
Fischer's Linear Discriminant solves a dual problem: Traditionally, we have defined a separating hyperplane. Fischer's linear discriminant defines a projection which reduced the data to a single dimension.
 +
 
 +
Fischer's Linear Discriminant optimizes the between class-spread.
 +
----
 +
[[ECE662:BoutinSpring08_Old_Kiwi|Back to ECE662, Spring 2008, Prof. Boutin]]
 +
[[Category:Lecture Notes]]

Latest revision as of 08:48, 17 January 2013

Lecture 10, ECE662: Decision Theory

Lecture notes for ECE662 Spring 2008, Prof. Boutin.

Other lectures: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,



The perceptron algorithm maps an input to a single binary output value. For a proof of the Perceptron convergence theorem, see [PerceptronConvergenceTheorem]

First introduced in [Lecture 9]. The gradient descent algorithm used is discussed in [Lecture 10].

Gradient Descent

Main article: Gradient Descent_Old Kiwi

Consider the cost function $ J_p(\vec{c}) = \sum -\vec{c}y_i $, where $ y_i $ is the misclassified data.

We use the gradient descent procedure to minimize $ J_p(\vec{c}) $.

Compute $ \nabla J_p(\vec{c}) = ... = - \sum y_i $.

Follow basic gradient descent procedure:

- Initial guess $ \vec{c_1} $

- Then, update $ \vec{c_2} = \vec{c_1} - \eta(1) \nabla J_p(\vec{c}) $, where $ \eta(1) $ is the step size

- Iterate $ \vec{c_{k+1}} = \vec{c_{k}} - \eta(k) \nabla J_p(\vec{c}) $until it "converges"

( e.g when $ \eta(k) \nabla J_p(\vec{c}) $< threshold )

Gradient Descent in the Perceptron Algorithm

  • Theorem: If samples are linearly separable, then the "batch [perceptron]" iterative algorithm. The proof of this theorem, PerceptronConvergenceTheorem, is due to Novikoff (1962).

$ \vec{c_{k+1}} = \vec{c_k} + cst \sum y_i $, where $ y_i $ is the misclassified data, terminates after a finite number of steps.

But, in practice, we do not have linear separable data. So instead, we use the Least Squares Procedure.

We want $ \vec{c} \cdot y_i > 0 $, for all samples $ y_i $. This is a linear inequality problem which is usually hard to solve. Therefore, we need to convert this problem into a linear equality problem.

We choose $ b_i $ > 0 and solve $ \vec{c} \cdot y_i = b_i $, for all i

The matrix equation has the following form:

Equarion111 Old Kiwi.jpg

This can also be written as $ \vec{Y} \cdot \vec{c} = \vec{b} $

If d=n, and $ \vec{y_1} $,..., $ \vec{y_d} $ are "generic" ( i.e. determinant of $ \vec{Y} $ is not 0), then we "can" solve by matrix inversion.

If d > n, over-constrained system (there is no solution in the generic case). This is the case where there is more data than you need, and the information is contradictory. In this case, we seek to minimize $ || Y \vec{c} - \vec{b} ||_{L_2} $. The solution is given by $ \vec{c} = (Y^{\top}Y)^{-1}Y^{\top}b $, if $ |Y^{\top}y| \ne 0 $.

If $ |Y^{\top}y| = 0 $, $ \vec{c} = lim (Y^{\top}Y + \epsilon1)^{-1}Y^{\top}b $ always exists!



Fischer's Linear Discriminant

Main article: Fisher Linear Discriminant_Old Kiwi

Fischer's Linear Discriminant solves a dual problem: Traditionally, we have defined a separating hyperplane. Fischer's linear discriminant defines a projection which reduced the data to a single dimension.

Fischer's Linear Discriminant optimizes the between class-spread.


Back to ECE662, Spring 2008, Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett