Line 21: Line 21:
 
We want to find <math>c\in\mathbb{R}^{n+1}</math> so that a testing data point <math>\vec{y}_i</math> is labelled  
 
We want to find <math>c\in\mathbb{R}^{n+1}</math> so that a testing data point <math>\vec{y}_i</math> is labelled  
  
<math> {w_1} </math> if <math> c\cdot\vec{y}>0</math>  
+
<math> {w_1} </math> if <math> c\cdot\vec{y}>0</math>  
  
<math> {w_2} </math> if <math> c\cdot\vec{y}<0</math>  
+
<math> {w_2} </math> if <math> c\cdot\vec{y}<0</math>  
  
 
We can apply a trick here to replace all <math>\vec{y}</math>'s in class <math>w_2</math> by <math>-\vec{y}</math>, then the task is looking for <math>c</math> so that <math>c\cdot y>0</math>
 
We can apply a trick here to replace all <math>\vec{y}</math>'s in class <math>w_2</math> by <math>-\vec{y}</math>, then the task is looking for <math>c</math> so that <math>c\cdot y>0</math>

Revision as of 11:43, 1 May 2014


'Support Vector Machine and its Applications in Classification Problems
A slecture by Xing Liu Partially based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.



Outline of the slecture

  • Linear discriminant functions
  • Summary
  • References


Linear classification Problem Statement

In a linear classification problem, the feature space can be divided into different regions by hyperplanes. In this lecture, we will take a two-catagory case to illustrate. Given training samples $ \vec{y}_1,\vec{y}_2,...\vec{y}_n \in \mathbb{R}^p $, each $ \vec{y}_i $ is a p-dimensional vector and belongs to either class $ w_1 $ or $ w_2 $. The goal is to find the maximum-margin hyperplane that separate the points in the feature space that belong to class $ w_1 $ from those belong to class$ w_2 $. The discriminate function can be written as

$ g(\vec{y}) = c\cdot\vec{y} $

We want to find $ c\in\mathbb{R}^{n+1} $ so that a testing data point $ \vec{y}_i $ is labelled

$ {w_1} $ if $ c\cdot\vec{y}>0 $

$ {w_2} $ if $ c\cdot\vec{y}<0 $

We can apply a trick here to replace all $ \vec{y} $'s in class $ w_2 $ by $ -\vec{y} $, then the task is looking for $ c $ so that $ c\cdot y>0 $


. The separation hyperplane can be written as $ c\cdot y=b $ where $ \cdot $ denotes the dot product, c determines the orientation of the hyperplane and

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett