Line 1: Line 1:
 
{|
 
{|
 
|-
 
|-
! colspan="4" style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" | Laplace Transform Pairs and Properties
+
! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Laplace Transform Pairs and Properties
 
|-
 
|-
! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Definition
+
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Definition
! rowspan="2" |
+
! rowspan="2" |  
+
 
|-
 
|-
! colspan="2" | Laplace Transform  
+
| align="right" style="padding-right: 1em;" | Laplace Transform  
! colspan="2" | <math>X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt</math>
+
|<math>X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt, \ s\in {\mathbb C} \ </math>  
 
|-
 
|-
! colspan="2" | Inverse Laplace Transform  
+
| align="right" style="padding-right: 1em;" | Inverse Laplace Transform  
! colspan="2" |  
+
| add formula here
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Properties of the Laplace Transform
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 
|-
 
|-
 
! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Laplace Transform Pairs  
 
! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Laplace Transform Pairs  

Revision as of 06:23, 26 October 2010

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt, \ s\in {\mathbb C} \ $
Inverse Laplace Transform add formula here
Properties of the Laplace Transform
please continue place formula here
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Go to the ECE 301 homepage

Back to Collective Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang