Line 5: Line 5:
 
==Question 1==
 
==Question 1==
  
Pick a note frequency <span class="texhtml">''f''<sub>0</sub> = 392''H''''z''</span>  
+
Pick a note frequency <span class="texhtml">''f''<sub>0</sub> = 392''H'''z''</span>  
  
 
{|
 
{|
 
|-
 
|-
| <span class="texhtml">''x''(''t'') = ''c''''o''''s''(2π''f''<sub>0</sub>''t'') = ''c''''o''''s''(2π * 392''t'')</span>
+
| <span class="texhtml">''x''(''t'') = 'c''o''s'(2π''f''<sub>0</sub>''t'') = 'c''o''s'(2π * 392''t'')</span>
 
|-
 
|-
 
| <math>a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000}</math>
 
| <math>a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000}</math>
Line 99: Line 99:
  
 
(1) <math>x[n]=a^{n+1}u[n-1],\ a>0</math>
 
(1) <math>x[n]=a^{n+1}u[n-1],\ a>0</math>
 +
 +
Compute Z transform
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 107: Line 109:
 
\end{align}</math>
 
\end{align}</math>
  
 +
with ROC: <math>|z|>a</math>
 +
 +
Compute Inverse Z transform
 +
 +
The power series expansion of the given function is
 +
 +
<math>\begin{align}
 +
X(z) &= a^2 z^{-1}\sum_{n=0}^{\infty} a^n z^{-n} \\
 +
&= a\sum_{n=0}^{\infty} a^{n+1}z^{-n-1}
 +
\end{align}</math>
 +
 +
Substitute n=m-1
 +
 +
<math>\begin{align}
 +
X(z) &= a\sum_{m=1}^{\infty} a^{m}z^{-m} \\
 +
&= \sum_{m=-\infty}^{\infty} a^{m+1}u[m-1]z^{-m},\ \text{and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}
 +
\end{align}</math>
 +
 +
<math>\begin{align}
 +
x[n] &= a^{n+1} u[n-1]
 +
\end{align}</math>
 
----
 
----
 
[[Hw2_ECE438F11|Back to Homework2]]
 
[[Hw2_ECE438F11|Back to Homework2]]
  
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]

Revision as of 16:55, 13 September 2011

Homework 2, ECE438, Fall 2011, Prof. Boutin


Question 1

Pick a note frequency f0 = 392Hz

x(t) = 'cos'(2πf0t) = 'cos'(2π * 392t)
$ a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000} $
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $

$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\ \end{align} $

$ 0<2\pi *\frac{392}{1000}<\pi $
$ -\pi<-2\pi *\frac{392}{1000}<0 $

$ \begin{align} \mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ \end{align} $

Xw1 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] $

Xw1 multiperiod.jpg

In this situation, no aliasing occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum remains the same as Fig a-1.
$ b.\ Assign\ sampling\ period\ T_2=\frac{1}{500} $
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $

$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\ \end{align} $

$ \pi<2\pi *\frac{392}{500}<2\pi $
$ -2\pi<-2\pi *\frac{392}{500}<\pi $
$ \mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_2(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 multiperiod.jpg

In this situation, aliasing DO occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum is different from Fig b-1.

Xf2 multiperiod.jpg


Question 2

(1) $ x[n]=a^{n+1}u[n-1],\ a>0 $

Compute Z transform

$ \begin{align} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ &= \sum_{n=-\infty}^{\infty} a^{n+1} u[n-1]z^{-n} \\ &= a\sum_{n=1}^{\infty} a^{n}z^{-n} \\ &= \frac{a^2z^{-1}}{1-az^{-1}} \end{align} $

with ROC: $ |z|>a $

Compute Inverse Z transform

The power series expansion of the given function is

$ \begin{align} X(z) &= a^2 z^{-1}\sum_{n=0}^{\infty} a^n z^{-n} \\ &= a\sum_{n=0}^{\infty} a^{n+1}z^{-n-1} \end{align} $

Substitute n=m-1

$ \begin{align} X(z) &= a\sum_{m=1}^{\infty} a^{m}z^{-m} \\ &= \sum_{m=-\infty}^{\infty} a^{m+1}u[m-1]z^{-m},\ \text{and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \begin{align} x[n] &= a^{n+1} u[n-1] \end{align} $


Back to Homework2

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009