(Cauchy's Integral Method for z-Inverse)
Line 12: Line 12:
 
----
 
----
 
[[ ECE438 (BoutinFall2009)|Back to ECE438 (BoutinFall2009)]]
 
[[ ECE438 (BoutinFall2009)|Back to ECE438 (BoutinFall2009)]]
 +
 +
 +
I figured, out the residue method involving complex integration is not as bad as it looks. It also helps when you get stuck with a fraction you can't expand because the norm of 1/z or z is not < 1. At least it helped me. But I was curious whether we are allowed to use it on the exam and homework problems in general.

Revision as of 18:34, 8 September 2009


Discussion related to HW1 (ECE438BoutinFall09)

I think the ROC for question 7a is incorrect. Should be |z| < 1/2.

  • Nope, ROC is correct. Look at the second example I did on Friday and use the same trick. --Mboutin 18:12, 7 September 2009 (UTC)
    • I tried to do this, but I get stuck with this, which doesn't compare well with the formula of the Z-Transform: $ (1/4) * \sum_{n=0}^\infty (-z/2 + 3/4)^n $ --Rodrigaa 19:47, 7 September 2009 (UTC)

For problem 7d, the differentiation property might help. However, the ROC defined in the problem seems wierd. Negative magnitude? :(

  • Oops! Yeah the ROC was supposed to be $ |Z|<1 $. But, technically, the statement is correct, just a bit weird. --Mboutin 18:12, 7 September 2009 (UTC)

Back to ECE438 (BoutinFall2009)


I figured, out the residue method involving complex integration is not as bad as it looks. It also helps when you get stuck with a fraction you can't expand because the norm of 1/z or z is not < 1. At least it helped me. But I was curious whether we are allowed to use it on the exam and homework problems in general.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang