Line 14: Line 14:
 
Pull in the relation into the fact, we obtain
 
Pull in the relation into the fact, we obtain
  
<math>{\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ).</math>
+
<math>{\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ). (*)</math>  
  
 
Then we justify the following equality.
 
Then we justify the following equality.
Line 22: Line 22:
 
Given <math>\int\limits_{-\infty}^{\infty}\delta(x)dx=1 </math>
 
Given <math>\int\limits_{-\infty}^{\infty}\delta(x)dx=1 </math>
  
then <math>\int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy</math>
+
then <math>\int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy = \frac{1}{a}</math>
  
 
Therefore, <math>\delta(ax) = \frac{1}{a}\delta(x) </math>
 
Therefore, <math>\delta(ax) = \frac{1}{a}\delta(x) </math>
  
 +
Therefore, (*) can be further simplified to
 +
 +
<math>X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}{j 2\pi f}</math>
  
 
----
 
----

Revision as of 13:11, 4 September 2011

Homework 1, ECE438, Fall 2011, Prof. Boutin

Question 1

In ECE301, you learned that the Fourier transform of a step function $ x(t)=u(t) $ is the following:

$ {\mathcal X} (\omega) = \frac{1}{j \omega} + \pi \delta (\omega ). $

Use this fact to obtain an expression for the Fourier transform $ X(f) $ (in terms of frequency in hertz) of the step function. (Your answer should agree with the one given in this table.) Justify all your steps.

Answer: Recall the relation between frequency in hertz $ f $ and frequency in radius $ \omega $

$ \omega =2\pi f $

Pull in the relation into the fact, we obtain

$ {\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ). (*) $

Then we justify the following equality.

$ \delta(ax) = \frac{1}{a}\delta(x) $

Given $ \int\limits_{-\infty}^{\infty}\delta(x)dx=1 $

then $ \int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy = \frac{1}{a} $

Therefore, $ \delta(ax) = \frac{1}{a}\delta(x) $

Therefore, (*) can be further simplified to

$ X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}{j 2\pi f} $


Back to Homework1

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood