(New page: =Homework 1, ECE438, Fall 2011, Prof. Boutin= ==Question 1== In ECE301, you learned that the Fourier transform of a step function <math>x(t)=u(t)</math> is the fo...)
 
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
=Homework 1, [[ECE438]], Fall 2011, [[user:mboutin|Prof. Boutin]]=
 
=Homework 1, [[ECE438]], Fall 2011, [[user:mboutin|Prof. Boutin]]=
 +
 +
----
  
 
==Question 1==
 
==Question 1==
Line 14: Line 16:
 
Pull in the relation into the fact, we obtain
 
Pull in the relation into the fact, we obtain
  
<math>{\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ).</math>
+
<math>{\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ). (*)</math>  
  
 
Then we justify the following equality.
 
Then we justify the following equality.
Line 20: Line 22:
 
<math>\delta(ax) = \frac{1}{a}\delta(x) </math>
 
<math>\delta(ax) = \frac{1}{a}\delta(x) </math>
  
Given <math>\int\limits_{-\infty}^{\infty}\delta(x)dx=1 </math>
+
First of all, we have
 +
 
 +
<math>\delta(ax) = \left\{
 +
\begin{array}{ll}
 +
\infty, & x=0\\
 +
0, & \text { else}.
 +
\end{array}
 +
\right.
 +
</math>
 +
 
 +
Now, given the fact that <math>\int\limits_{-\infty}^{\infty}\delta(x)dx=1 </math>
 +
 
 +
then <math>\int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy = \frac{1}{a}</math>
 +
 
 +
Therefore, <math>\delta(ax) = \frac{1}{a}\delta(x) </math>
 +
 
 +
Therefore, (*) can be further simplified to
 +
 
 +
<math>X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}({j 2\pi f})</math>
 +
 
 +
----
 +
==Question 2 ==
 +
 
 +
We cannot compute the Fourier transform directly because
 +
 
 +
<math>{\mathcal X}(\omega) = \int\limits_{-\infty}^{\infty}x(t)e^{-j\omega t}dt = \int\limits_{-\infty}^{\infty}e^{-j(\omega -\pi) t}dt</math>
 +
 
 +
cannot be integrated.
 +
 
 +
Instead, we can find out <math>{\mathcal X}(\omega) </math> using inverse Fourier transform.
 +
 
 +
<math>
 +
\begin{align}
 +
x(t) &= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega \\
 +
 
 +
 
 +
e^{j\pi t}&= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega
 +
 
 +
\end{align}
 +
</math>
 +
 
 +
By comparing the left hand side and right hand side of the equation, we have
 +
 
 +
<math>\frac{1}{2\pi}{\mathcal X}(\omega) = \delta(\omega - \pi)</math>
 +
 
 +
Therefore,
  
 +
<math>{\mathcal X}(\omega) = 2\pi \delta(\omega - \pi)</math>
  
 
----
 
----

Latest revision as of 05:15, 7 September 2011

Homework 1, ECE438, Fall 2011, Prof. Boutin


Question 1

In ECE301, you learned that the Fourier transform of a step function $ x(t)=u(t) $ is the following:

$ {\mathcal X} (\omega) = \frac{1}{j \omega} + \pi \delta (\omega ). $

Use this fact to obtain an expression for the Fourier transform $ X(f) $ (in terms of frequency in hertz) of the step function. (Your answer should agree with the one given in this table.) Justify all your steps.

Answer: Recall the relation between frequency in hertz $ f $ and frequency in radius $ \omega $

$ \omega =2\pi f $

Pull in the relation into the fact, we obtain

$ {\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ). (*) $

Then we justify the following equality.

$ \delta(ax) = \frac{1}{a}\delta(x) $

First of all, we have

$ \delta(ax) = \left\{ \begin{array}{ll} \infty, & x=0\\ 0, & \text { else}. \end{array} \right. $

Now, given the fact that $ \int\limits_{-\infty}^{\infty}\delta(x)dx=1 $

then $ \int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy = \frac{1}{a} $

Therefore, $ \delta(ax) = \frac{1}{a}\delta(x) $

Therefore, (*) can be further simplified to

$ X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}({j 2\pi f}) $


Question 2

We cannot compute the Fourier transform directly because

$ {\mathcal X}(\omega) = \int\limits_{-\infty}^{\infty}x(t)e^{-j\omega t}dt = \int\limits_{-\infty}^{\infty}e^{-j(\omega -\pi) t}dt $

cannot be integrated.

Instead, we can find out $ {\mathcal X}(\omega) $ using inverse Fourier transform.

$ \begin{align} x(t) &= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega \\ e^{j\pi t}&= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega \end{align} $

By comparing the left hand side and right hand side of the equation, we have

$ \frac{1}{2\pi}{\mathcal X}(\omega) = \delta(\omega - \pi) $

Therefore,

$ {\mathcal X}(\omega) = 2\pi \delta(\omega - \pi) $


Back to Homework1

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn