Line 22: Line 22:
 
1. Measure the projections <math>p_{\theta}(r)</math>. (i.e. using CT)<br />
 
1. Measure the projections <math>p_{\theta}(r)</math>. (i.e. using CT)<br />
 
2. Filter the projections <math>g_{\theta}(r) = h(r) * p_{\theta}(r)</math><br />
 
2. Filter the projections <math>g_{\theta}(r) = h(r) * p_{\theta}(r)</math><br />
3. Back project filtered projections
+
3. Back project filtered projections<br />
 
<math>f(x,y) = \int_0^{\pi}g_{\theta}(x\cos(\theta)+x\sin(\theta))d\theta</math><br />
 
<math>f(x,y) = \int_0^{\pi}g_{\theta}(x\cos(\theta)+x\sin(\theta))d\theta</math><br />
  
Line 31: Line 31:
  
 
From the Fourier Slice Theorem, we get the following relationships.<br />
 
From the Fourier Slice Theorem, we get the following relationships.<br />
<math>\begin{aligh}
+
<math>\begin{align}
 
u &= \rho\cos(\theta) \\
 
u &= \rho\cos(\theta) \\
 
v &= \rho\sin(\theta)
 
v &= \rho\sin(\theta)
Line 69: Line 69:
 
Pulling out <math>g_{\theta}(t)</math>,<br />
 
Pulling out <math>g_{\theta}(t)</math>,<br />
 
<math>\begin{align}
 
<math>\begin{align}
g_{\theta}(t) &= \int_{\infty}^{\infty}|\rho|P_{\theta}(\rho)e^{2\pi j\rho t}d\rho \\
+
g_{\theta}(t) &= \int_{\infty}^{\infty}|\rho | P_{\theta}(\rho )e^{2\pi j\rho t} d\rho \\
&= CTFT^{-1}\{|\rho|P_{\theta}(\rho)\} ", by comparison with the inverse CTFT"\\
+
&= CTFT^{-1}\{|\rho |P_{\theta}(\rho)\} ", by comparison with the inverse CTFT"\\
&= h(t) * p_{\theta}(r)
+
&= h(t) * p_{\theta}(r) \\
 
\end{align}</math>
 
\end{align}</math>
  
 
=Projection Filter Analysis=
 
=Projection Filter Analysis=
Now let's focus on <math>g_{\theta}(r)</math>.
+
Now let's focus on <math>g_{\theta}(r)</math>.<br />
 
<math>g_{\theta}(r) = h(r) * p_{\theta}(r)</math><br />
 
<math>g_{\theta}(r) = h(r) * p_{\theta}(r)</math><br />
 
The frequency response of the filter is
 
The frequency response of the filter is
Line 83: Line 83:
 
[[Image: ;asdjf;alsdf]]
 
[[Image: ;asdjf;alsdf]]
  
This filter can be represented by a rect minus a triangle wave, so  
+
This filter can be represented by a rect function minus a triangle function, so its equation is<br />
 +
<math>\begin{align}
 +
H(\rho) &= f_c[rect(f/(2f_c))-\wedge(f/f_c)] \\
 +
h(r) &= f_c^2[2sinc(2f_c t)-sinc^2(tf_c)]
 +
\end{align}</math>
 
=Back Projection Analysis=
 
=Back Projection Analysis=
  

Revision as of 14:12, 21 December 2014

Link title

Convolution/Fourier Back Projection Algorithm

A slecture by ECE student Sahil Sanghani

Partly based on the ECE 637 material of Professor Bouman.


Introduction

Convolution Back Projection (CBP) offers a reconstruction method that is not computationally expensive. Although the method is based on the Fourier Slice Theorem, there's never a transformation to the frequency domain. Theoretically CBP involves extruding every projection back through the origin and then summing the results. This operation is called back projection. The projections in Figure 1 were all assumed to be the same regardless of $ \theta $. In Figure 1a, the extrusion is demonstrated. In Figure 1b, the summing is demonstrated.


Summary

There are 3 steps to reconstructing an object from its projections using CBP.
1. Measure the projections $ p_{\theta}(r) $. (i.e. using CT)
2. Filter the projections $ g_{\theta}(r) = h(r) * p_{\theta}(r) $
3. Back project filtered projections
$ f(x,y) = \int_0^{\pi}g_{\theta}(x\cos(\theta)+x\sin(\theta))d\theta $

An infinite number of filtered back projections will result in a perfect reconstruction of the original image of the object given it is band limited. Since it is impossible to take that many projections, a good practice is to take at least $ n $ back projections for a $ n $ by $ n $ image.


Derivation

From the Fourier Slice Theorem, we get the following relationships.
$ \begin{align} u &= \rho\cos(\theta) \\ v &= \rho\sin(\theta) \end{align} $

Now let's calculate the Jacobian of the polar coordinate transformation.

$ dudv = \left | \frac{\partial (u,v)}{\partial (\theta,\rho)} \right \vert d\theta d\rho $
$ \begin{align} \left | \frac{\partial (u,v)}{\partial (\theta,\rho)} \right \vert &= det\begin{bmatrix} \frac{\partial u}{\partial \theta} & \frac{\partial u}{\partial \rho} \\ \frac{\partial v}{\partial \theta} & \frac{\partial u}{\partial \rho} \end{bmatrix} \\ &= det\begin{bmatrix} \frac{\partial (\rho\cos(\theta))}{\partial \theta} & \frac{\partial (\rho\cos(\theta))}{\partial \rho} \\ \frac{\partial (\rho\sin(\theta))}{\partial \theta} & \frac{\partial (\rho\sin(\theta))}{\partial \rho} \end{bmatrix} \\ &= det\begin{bmatrix} -\rho\sin(\theta) & \cos(\theta) \\ \rho\cos(\theta) & \sin(\theta) \end{bmatrix} \\ &= |-\rho\sin^{2}(\theta) - \rho\cos^{2}(\theta)| \\ &= |-\rho(\sin^{2}(\theta) + \cos^{2}(\theta))| \\ &= |-\rho| \\ &= |\rho| \\ \end{align} $
$ \Rightarrow dudv = |\rho|d\theta d\rho $
Starting with the formula for the inverse CSFT and using the Fourier Slice theorem, we will end up with
$ \begin{align} f(x,y) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(u,v)e^{2\pi j(xu+yv)}dudv \\ &= \int_{-\infty}^{\infty}\int_{0}^{\pi}F(\rho\cos(\theta),\rho\sin(\theta))e^{2\pi j(x\rho\cos(\theta) +y\rho\sin(\theta))}|\rho|d\theta d\rho \\ &= \int_0^{\pi}\underbrace{[\int_{-\infty}^{\infty}|\rho|P_{\theta}e^{2\pi j\rho(x\cos(\theta) +y\sin(\theta))}d\rho]}_{g_{\theta}(x\cos(\theta) + y\sin(\theta))}d\theta \end{align} $
Pulling out $ g_{\theta}(t) $,
$ \begin{align} g_{\theta}(t) &= \int_{\infty}^{\infty}|\rho | P_{\theta}(\rho )e^{2\pi j\rho t} d\rho \\ &= CTFT^{-1}\{|\rho |P_{\theta}(\rho)\} ", by comparison with the inverse CTFT"\\ &= h(t) * p_{\theta}(r) \\ \end{align} $

Projection Filter Analysis

Now let's focus on $ g_{\theta}(r) $.
$ g_{\theta}(r) = h(r) * p_{\theta}(r) $
The frequency response of the filter is $ H(\rho) = CTFT{h(r)} = |\rho| $
After graphing the frequency response, it is apparent that the filter is a high pass filter.

File:;asdjf;alsdf

This filter can be represented by a rect function minus a triangle function, so its equation is
$ \begin{align} H(\rho) &= f_c[rect(f/(2f_c))-\wedge(f/f_c)] \\ h(r) &= f_c^2[2sinc(2f_c t)-sinc^2(tf_c)] \end{align} $

Back Projection Analysis


References:
[1] C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.

Back to Honors Contract Main Page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva