Revision as of 06:29, 29 September 2014 by Mboutin (Talk | contribs)


Homework 5, ECE438, Fall 2014, Prof. Boutin

Hard copy due in class, Monday October 6, 2014.


Presentation Guidelines

  • Write only on one side of the paper.
  • Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
  • Staple the pages together.
  • Include a cover page.
  • Do not let your dog play with your homework.

Questions 1

Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]?

a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $


b) $ x_1[n]= e^{j \frac{2}{3} \pi n}; $

c) $ x_5[n]= e^{-j \frac{2}{1000} \pi n}; $

d) $ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n}; $

e) $ x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ; $

f) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $

g) $ x_8[n]= (-j)^n . $

h) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $

Note: All of these DFT are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!


Question 2

Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.

Note: Again, this is a VERY simple problem. If your computation looks like a monster, look for a simpler approach!

Question 3

Prove the time shifting property of the DFT.


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang