(One intermediate revision by the same user not shown)
Line 16: Line 16:
 
----
 
----
 
==Questions 1==
 
==Questions 1==
Compute the DFT of the following signals  
+
Compute the DFT of the following signals x[n] (if possible). How does your answer  relate to the Fourier series coefficients of x[n]?
  
 
a) <math class="inline">
 
a) <math class="inline">
Line 27: Line 27:
 
</math>  
 
</math>  
  
b) <math class="inline">x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n )</math>
 
  
 +
b) <math>x_1[n]= e^{j \frac{2}{3} \pi n};</math>
  
 +
c) <math>x_5[n]= e^{-j \frac{2}{1000} \pi n};</math>
  
c) <math class="inline">x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n </math>
+
d) <math>x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n};</math>
  
 +
e) <math>x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ;</math>
 +
 +
f) <math class="inline">x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n )</math>
 +
 +
g) <math>x_8[n]= (-j)^n .</math>
 +
 +
h) <math class="inline">x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n </math>
 +
 +
Note: All of these DFTs are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!
 +
----
 
==Question 2 ==
 
==Question 2 ==
 
Compute the inverse DFT of  <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>.
 
Compute the inverse DFT of  <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>.
  
 
+
Note: Again, this is a VERY simple problem. Have pity for your grader, and try to use a simple approach!
 +
----
 
== Question 3 ==
 
== Question 3 ==
 
Prove the time shifting property of the DFT.  
 
Prove the time shifting property of the DFT.  

Latest revision as of 06:30, 29 September 2014


Homework 5, ECE438, Fall 2014, Prof. Boutin

Hard copy due in class, Monday October 6, 2014.


Presentation Guidelines

  • Write only on one side of the paper.
  • Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
  • Staple the pages together.
  • Include a cover page.
  • Do not let your dog play with your homework.

Questions 1

Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]?

a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $


b) $ x_1[n]= e^{j \frac{2}{3} \pi n}; $

c) $ x_5[n]= e^{-j \frac{2}{1000} \pi n}; $

d) $ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n}; $

e) $ x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ; $

f) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $

g) $ x_8[n]= (-j)^n . $

h) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $

Note: All of these DFTs are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!


Question 2

Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.

Note: Again, this is a VERY simple problem. Have pity for your grader, and try to use a simple approach!


Question 3

Prove the time shifting property of the DFT.


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett