Revision as of 03:12, 10 September 2014 by Mboutin (Talk | contribs)


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin

Note: Please pay attention to the difference between $ X $ and $ {\mathcal X} $.


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ {\mathcal X} (\omega)= 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= 2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0), \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A sine

From table, $ {\mathcal X} (\omega)= \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $, therefore
$ \begin{align} X(f) & = {\mathcal X} (2 \pi f)\\ &= \frac{2 \pi}{2j} \delta (2\pi f - 2\pi f_0) - \frac{2 \pi}{2 j} \delta(2\pi f + 2 \pi f_0) \\ &=\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0) , \end{align} $
where the last line follows from the scaling property of the Dirac delta distribution.


A cosine

$ x(t)=cos(2\pi f_0 t) = \frac{1}{2}e^{j2\pi f_0t} + \frac{1}{2}e^{-j2\pi f_0 t} $

$ \begin{align} \mathcal{F} \left \{ cos (2 \pi f_0 t) \right \} &= \mathcal{F} \left \{ \frac{1}{2} e^{j2\pi f_0 t} + \frac{1}{2} e^{-j2\pi f_0 t} \right \} \\ &= \frac{2 \pi}{2} \delta (2\pi f - 2\pi f_0) + \frac{2 \pi}{2 } \delta(2\pi f + 2 \pi f_0) \mbox{, using the transform of the complex exponential} \\ &= \frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0) \mbox{, by the scaling property of the delta} \end{align} $


A periodic function

$ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t} $
From the table, we have the transform pair:
$ \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0t} \leftrightarrow 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_0t} \leftrightarrow &2\pi \sum_{k=-\infty}^{\infty} a_k \delta(2\pi f-k2\pi f_0) \\ &=\sum_{k=-\infty}^{\infty} a_k \delta(f-k f_0) \mbox{, by the scaling property of the delta} \end{align} $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $
From the table, we have the transform pair:
$ \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( \omega - \frac{2\pi k}{T} \right ) $
Therefore, using the definition that $ \omega=2\pi f $:
$ \begin{align} \sum_{n=-\infty}^{\infty} \delta (t-nT) \leftrightarrow &\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta \left ( 2\pi f- \frac{2\pi k}{T} \right ) \\ &=\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left (f- \frac{k}{T} \right ) \mbox{, using the scaling property of the delta} \end{align} $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang