(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 1 Solution, ECE438, Fall 2014, [[user:mboutin|Pro...)
 
Line 6: Line 6:
  
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 
=Homework 1 Solution, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 +
  
 
----
 
----
 
===A complex exponential===
 
===A complex exponential===
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
 
<math> x(t)=e^{j2 \pi f_0 t} </math>
 +
 +
From [https://www.projectrhea.org/rhea/index.php/CTFourierTransformPairsCollectedfromECE301withomega  table], <math>e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0)</math>, therefore <br>
 +
<math>
 +
\begin{align}
 +
e^{j2\pi f_0 t }  \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\
 +
&=\delta(f - f_0)
 +
\end{align}
 +
</math><br>
 +
Where the last line is by the [https://www.projectrhea.org/rhea/index.php/Homework_3_ECE438F09 scaling] property of the delta function.
 
----
 
----
*a sine  
+
===A sine===
 +
<math> x(t)=sin(t) </math>
 
----
 
----
*A cosine
+
===A cosine===
 +
<math>x(t)=cos(t)</math>
 
----
 
----
*A periodic function
+
===A periodic function===
 +
<math>x(t)=x(t-T)</math>
 
----
 
----
*An impulse train
+
===An impulse train===
 +
<math>x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT)</math>
 
----
 
----
  
 
Note: '''You will get zero credit if you simply write down the answers without any justification.'''
 
 
== Presentation Guidelines ==
 
* Write only on one side of the paper.
 
* Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
 
* Staple the pages together.
 
* Include a cover page.
 
* Do not let your dog play with your homework.
 
----
 
 
== Discussion ==
 
== Discussion ==
 
You may discuss the homework below.
 
You may discuss the homework below.

Revision as of 15:32, 8 September 2014


Homework 1 Solution, ECE438, Fall 2014, Prof. Boutin


A complex exponential

$ x(t)=e^{j2 \pi f_0 t} $

From table, $ e^{j\omega_0t} \leftrightarrow 2\pi \delta(\omega - \omega_0) $, therefore
$ \begin{align} e^{j2\pi f_0 t } \leftrightarrow &2\pi \delta(2\pi f - 2\pi f_0) \\ &=\delta(f - f_0) \end{align} $
Where the last line is by the scaling property of the delta function.


A sine

$ x(t)=sin(t) $


A cosine

$ x(t)=cos(t) $


A periodic function

$ x(t)=x(t-T) $


An impulse train

$ x(t)=\sum_{n=-\infty}^{\infty} \delta (t-nT) $


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang