(30 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:geometric series]]
 +
[[Category:z transform]]
 +
 
== The Z-Transform ==
 
== The Z-Transform ==
Similar to the Laplace Transform, the Z-Transform is an extension of the Fourier Transform, in this case the DT Fourier Transform.  As previously defined, the response, <math>y[n]\!</math>, of a DT LTI system is <math>y[n] = H(z)z^n\!</math>, where <math>H(z) = \sum^{\infty}_{n = -\infty} h[n]z^{-n}\!</math>
+
Similar to the Laplace Transform, the Z-Transform is an extension of the Fourier Transform, in this case the DT Fourier Transform.  As previously defined, the response, <math>y[n]\!</math>, of a DT LTI system is <math>y[n] = H(z)z^n\!</math>, where <math>H(z) = \sum^{\infty}_{n = -\infty} h[n]z^{-n}\!</math>.  When <math>z = e^{j\omega}\!</math> with <math>\omega\!</math> real, this summation equals the Fourier Transform of <math>h[n]\!</math>.  When <math>z\!</math> is not restricted to this value, the summation is know as the Z-Transform of <math>h[n]\!</math>.  To be exact,
 +
 
 +
<center><math>X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\!</math></center>
 +
 
 +
where <math>z\!</math> is a complex variable.  This is sometimes denoted as <math>X(z) = Z(x[n])\!</math>.
 +
 
 +
== Relationship between Z-Transform and Fourier Transform ==
 +
The Fourier Transform at <math>\omega\!</math> is equal to the Z-Transform at <math>e^{j\omega}\!</math>, as shown below.
 +
 
 +
<math>X(\omega) = X(e^{j\omega})\!</math>
 +
 
 +
If we look at the unit circle with radius <math>r\!</math> and <math>X(z) = X(re^{j\omega})\!</math>, then
 +
 
 +
<math>X(z) = \!F(x[n]r^{-n})\!</math> because
 +
 
 +
<math>X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\!</math>
 +
 
 +
      <math>= \sum^{\infty}_{n = -\infty} x[n](re^{j\omega})^{-n}\!</math>
 +
 
 +
      <math>= \sum^{\infty}_{n = -\infty} x[n]r^{-n}e^{-j\omega n}\!</math>
 +
      |_____________________|
 +
              |
 +
      F.T. of <math>x[n]r^{-n}\!</math>
 +
 
 +
 
 +
== Region of Convergence ==
 +
Similar to the Laplace Transform, the Z-Transform sum does not always converge and a region of convergence is required for each problem asking for a Z-Transform.  The set of complex numbers, <math>z\!</math>, such that the Z-Transform of <math>x[n]\!</math> converges is called the "Region of Convergence" (ROC) of <math>X(z)\!</math>. To find the properties of the ROC, please see some of my classmates' pages.
 +
 
 +
== General Example of Z-Transform ==
 +
Find the Z-Transform of <math>x[n] = \frac{u[n]}{a^n}\!</math>.
 +
 
 +
<math>X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\!</math>
 +
 
 +
      <math>= \sum^{\infty}_{n = -\infty} \frac{u[n]}{a^n}z^{-n}\!</math>
 +
 
 +
      <math>= \sum^{\infty}_{n = 0} \frac{z^{-n}}{a^n}\!</math>
 +
 
 +
      <math>= \sum^{\infty}_{n = 0} (\frac{1}{az})^n\!</math>
 +
 
 +
if <math>|\frac{1}{az}| \geq 1\!</math>, then <math>X(z)\!</math> diverges.  else,
 +
 
 +
<math>X(z) = \frac{1}{1-\frac{1}{az}}\!</math>, by the geometric series formula.
 +
 
 +
      <math>= \frac{az}{az-1}\!</math>
 +
 
 +
Therefore, the Z-Transform is <math>\frac{az}{az-1}\!</math>, ROC is <math>|\frac{1}{az}| < 1\!</math> or <math>|z| > \frac{1}{2}\!</math>.

Latest revision as of 10:28, 4 February 2013


The Z-Transform

Similar to the Laplace Transform, the Z-Transform is an extension of the Fourier Transform, in this case the DT Fourier Transform. As previously defined, the response, $ y[n]\! $, of a DT LTI system is $ y[n] = H(z)z^n\! $, where $ H(z) = \sum^{\infty}_{n = -\infty} h[n]z^{-n}\! $. When $ z = e^{j\omega}\! $ with $ \omega\! $ real, this summation equals the Fourier Transform of $ h[n]\! $. When $ z\! $ is not restricted to this value, the summation is know as the Z-Transform of $ h[n]\! $. To be exact,

$ X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\! $

where $ z\! $ is a complex variable. This is sometimes denoted as $ X(z) = Z(x[n])\! $.

Relationship between Z-Transform and Fourier Transform

The Fourier Transform at $ \omega\! $ is equal to the Z-Transform at $ e^{j\omega}\! $, as shown below.

$ X(\omega) = X(e^{j\omega})\! $

If we look at the unit circle with radius $ r\! $ and $ X(z) = X(re^{j\omega})\! $, then

$ X(z) = \!F(x[n]r^{-n})\! $ because

$ X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\! $

     $ = \sum^{\infty}_{n = -\infty} x[n](re^{j\omega})^{-n}\! $
     $ = \sum^{\infty}_{n = -\infty} x[n]r^{-n}e^{-j\omega n}\! $
     |_____________________|
              |
     F.T. of $ x[n]r^{-n}\! $


Region of Convergence

Similar to the Laplace Transform, the Z-Transform sum does not always converge and a region of convergence is required for each problem asking for a Z-Transform. The set of complex numbers, $ z\! $, such that the Z-Transform of $ x[n]\! $ converges is called the "Region of Convergence" (ROC) of $ X(z)\! $. To find the properties of the ROC, please see some of my classmates' pages.

General Example of Z-Transform

Find the Z-Transform of $ x[n] = \frac{u[n]}{a^n}\! $.

$ X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\! $

     $ = \sum^{\infty}_{n = -\infty} \frac{u[n]}{a^n}z^{-n}\! $
     $ = \sum^{\infty}_{n = 0} \frac{z^{-n}}{a^n}\! $
     $ = \sum^{\infty}_{n = 0} (\frac{1}{az})^n\! $

if $ |\frac{1}{az}| \geq 1\! $, then $ X(z)\! $ diverges. else,

$ X(z) = \frac{1}{1-\frac{1}{az}}\! $, by the geometric series formula.

     $ = \frac{az}{az-1}\! $

Therefore, the Z-Transform is $ \frac{az}{az-1}\! $, ROC is $ |\frac{1}{az}| < 1\! $ or $ |z| > \frac{1}{2}\! $.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva