Line 1: Line 1:
 +
[[Category:energy]]
 +
[[Category:signal]]
 +
[[Category:ECE]]
 +
[[Category:ECE301]]
 +
[[Category:practice problem]]
 +
 +
 
=[[Homework_1_ECE301Fall2008mboutin|HW1]], [[ECE301]], Fall 2008, [[user:mboutin|Prof. Boutin]]=
 
=[[Homework_1_ECE301Fall2008mboutin|HW1]], [[ECE301]], Fall 2008, [[user:mboutin|Prof. Boutin]]=
  
Line 8: Line 15:
  
 
<math>P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |x(t)|^2\,dt)</math>
 
<math>P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |x(t)|^2\,dt)</math>
 
+
----
==Solution==
+
==Solution 1==
 
*<math>|x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1</math>
 
*<math>|x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1</math>
  
Line 18: Line 25:
 
<math> = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 </math>
 
<math> = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 </math>
 
----
 
----
 +
==Solution 2==
 +
<math>|x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1</math>
 +
 +
<math>E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt</math>
 +
 +
    <math>E\infty=\int_{-\infty}^\infty |1|^2\,dt=t|_{-\infty}^\infty</math>
 +
    <math>E\infty=\infty</math>
 +
 +
<math>P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt</math>
 +
 +
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt</math>
 +
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*t|_{-T}^T</math> <span style="color:green"> (*) </span>
 +
    <math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(T-(-T))</math> <span style="color:green"> (*) </span>
 +
    <math>P\infty=lim_{T \to \infty} \ 1</math>
 +
    <math>P\infty=1</math>
 +
 +
<span style="color:green"> *I would be careful using the start symbol to denote multiplication in this context. The start symbol is typically used for denoting convolution in electrical engineering. </span>
 +
----
 +
[[Signal_energy_CT|Back to CT signal energy page]]

Revision as of 15:13, 25 February 2015


HW1, ECE301, Fall 2008, Prof. Boutin

Problem

Given complex signal $ f(t)=e^{jt} = \cos(t) + j \sin(t) $, find $ E_\infty $ and $ P_\infty $.

Background Knowledge

$ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt $

$ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) $


Solution 1

  • $ |x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1 $
  • $ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty 1\,dt = t|_{-\infty}^{\infty} = \infty $
  • $ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt) = \lim_{T \to \infty} (\frac{1}{2T} t|_{-T}^T) $

$ = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 $


Solution 2

$ |x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=1 $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt $

   $ E\infty=\int_{-\infty}^\infty |1|^2\,dt=t|_{-\infty}^\infty $
   $ E\infty=\infty $

$ P\infty=lim_{T \to \infty} \ 1/(2T)\int_{-T}^{T} |x(t)|^2\,dt $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|1|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*t|_{-T}^T $  (*) 
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*(T-(-T)) $  (*) 
   $ P\infty=lim_{T \to \infty} \ 1 $
   $ P\infty=1 $

*I would be careful using the start symbol to denote multiplication in this context. The start symbol is typically used for denoting convolution in electrical engineering.


Back to CT signal energy page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett