(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Complex Modulus ==
+
[[Category:Complex Number Magnitude]]
 +
[[Category:ECE301]]
 +
 
 +
== Complex Modulus ([[Homework_1_ECE301Fall2008mboutin|HW1]], [[ECE301]], [[Main_Page_ECE301Fall2008mboutin|Fall 2008]])==
 
Complex Modulus, also known as the "Norm" of a complex number, is represented as <math>|z|</math>.
 
Complex Modulus, also known as the "Norm" of a complex number, is represented as <math>|z|</math>.
  
Line 10: Line 13:
  
 
(This format is used when dealing with Phasors)
 
(This format is used when dealing with Phasors)
 
  
 
== Basics ==
 
== Basics ==
 
*<math>|z|^2</math> of <math>|z|</math> is known as the '''Absolute Square'''.
 
 
  
 
*<math>\frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} = \frac{A}{B}\frac{|e^{i\phi_{1}}|}{|e^{i\phi_{2}}|} = \frac{A}{B}</math>
 
*<math>\frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} = \frac{A}{B}\frac{|e^{i\phi_{1}}|}{|e^{i\phi_{2}}|} = \frac{A}{B}</math>
Line 38: Line 37:
  
  
*<math>zz=|z|^2</math>
+
*<math>|z|^2</math> of <math>|z|</math> is known as the '''Absolute Square'''.
       Where <math>z</math> is the complex conjugate
+
 
 +
 
 +
*<math>z\overline z=|z|^2</math>
 +
 
 +
       Where <math>z</math> is a complex number and <math>\overline z</math> is the complex conjugate.
 
        
 
        
       <math>z=x-iy</math>
+
       <math>z = x + iy</math>
 +
     
 +
      <math>\overline z=x-iy</math>
 +
----
 +
[[Main_Page_ECE301Fall2008mboutin|Back to ECE301 Fall 2008 Prof. Boutin]]
 +
 
 +
[[ECE301|Back to ECE301]]
 +
 
 +
[[More_on_complex_magnitude|Back to Complex Magnitude page]]
 +
 
 +
Visit the [[ComplexNumberFormulas|"Complex Number Identities and Formulas" page]]

Latest revision as of 05:35, 23 September 2011


Complex Modulus (HW1, ECE301, Fall 2008)

Complex Modulus, also known as the "Norm" of a complex number, is represented as $ |z| $.

$ |x + iy| = \sqrt{x^2 + y^2} $


In exponential form for $ |z| $

$ |re^{i\phi}| = r $

(This format is used when dealing with Phasors)

Basics

  • $ \frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} = \frac{A}{B}\frac{|e^{i\phi_{1}}|}{|e^{i\phi_{2}}|} = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{A}{B}|e^{i(\phi_{1}-\phi_{2})}| = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} $


  • $ |Ae^{i\phi_{1}}||Be^{i\phi_{2}}| = {A}{B}|e^{i\phi_{1}}||e^{i\phi_{2}}| = {A}{B} $


  • $ |(Ae^{i\phi_{1}})(Be^{i\phi_{2}})| = {A}{B}|e^{i\phi_{1}+i\phi_{2}}| = {A}{B} $


  • $ |Ae^{i\phi_{1}}||Be^{i\phi_{2}}| = |(Ae^{i\phi_{1}})(Be^{i\phi_{2}})| $


  • $ |z^n|=|z|^n $


  • $ |z|^2 $ of $ |z| $ is known as the Absolute Square.


  • $ z\overline z=|z|^2 $
     Where $ z $ is a complex number and $ \overline z $ is the complex conjugate.
     
     $ z = x + iy $
     
     $ \overline z=x-iy $

Back to ECE301 Fall 2008 Prof. Boutin

Back to ECE301

Back to Complex Magnitude page

Visit the "Complex Number Identities and Formulas" page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett