(Proof)
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:complex numbers]]
 +
[[Category:Euler's formula]]
 +
 
==Euler's Forumla==
 
==Euler's Forumla==
  
Line 14: Line 17:
  
  
<math> e^{ix} = 1 + ix + /frac{{ix}^2}{2!} + /frac{{ix}^3}{3!} + /frac{{ix}^4}{4!} + /frac{{ix}^5}{5!} + \cdots </math>
+
<math> e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \cdots </math>
 +
 
 +
Expanding the complex terms yield:
 +
 
 +
<math> e^{ix} = 1 + ix - \frac{x^2}{2!} - \frac{(ix)^3}{3!} + \frac{x^4}{4!} + \frac{(ix)^5}{5!} - \cdots </math>
 +
 
 +
Rearranging the terms into even and odd exponents and factoring out the imaginary number:
 +
 
 +
<math> e^{ix} = (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots) </math>
 +
 
 +
Which is equivalent to:
 +
 
 +
<math> e^{ix} = \cos x + i\sin x </math>

Latest revision as of 05:48, 23 September 2011


Euler's Forumla

$ e^{ix} = \cos x + i * \sin x $

Proof

Using Taylor Series:

$ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $

$ \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots $

$ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots $


$ e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \cdots $

Expanding the complex terms yield:

$ e^{ix} = 1 + ix - \frac{x^2}{2!} - \frac{(ix)^3}{3!} + \frac{x^4}{4!} + \frac{(ix)^5}{5!} - \cdots $

Rearranging the terms into even and odd exponents and factoring out the imaginary number:

$ e^{ix} = (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots) $

Which is equivalent to:

$ e^{ix} = \cos x + i\sin x $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach