(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on Computing the Fourier Transform of a Continuous-time Signal = Compute the Fourier transform of...)
 
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
----
 
----
= Practice Question on Computing the Fourier Transform of a Continuous-time Signal  =
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Transform of a Continuous-time Signal  =
 
Compute the Fourier transform of the signal
 
Compute the Fourier transform of the signal
  
Line 21: Line 21:
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Write it here.
+
 
 +
For a square wave,
 +
 
 +
<math>a_k=\frac{sin(k\omega_0 T_1)}{\pi k}</math>
 +
 
 +
In this case,
 +
 
 +
<math>\omega_0=\frac{2\pi}{20}=\frac{\pi}{10} \mbox{ and } T_1 = 5</math>
 +
 
 +
Therefore
 +
 
 +
<math>\chi(\omega)=\sum_{k=-\infty}^{\infty}2\pi\frac{sin(k\frac{\pi}{10} 5)}{\pi k}\delta(\omega-k\frac{\pi}{10})=\sum_{k=-\infty}^{\infty}2\frac{sin(k\frac{\pi}{2})}{ k}\delta(\omega-k\frac{\pi}{10})</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 21:13, 21 February 2011 (UTC)
 +
 
 +
:<span style="color:green">TA's comments: Good Job. You may use \sin to produce a <math>\sin</math>.</span>
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Write it here.
 
Write it here.

Latest revision as of 10:26, 11 November 2011


Practice Question on Computing the Fourier Transform of a Continuous-time Signal

Compute the Fourier transform of the signal

$ x(t) = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq t \leq 5,\\ 0, & \text{ for } 5< |t| \leq 10, \end{array} \right. \ $

x(t) periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

For a square wave,

$ a_k=\frac{sin(k\omega_0 T_1)}{\pi k} $

In this case,

$ \omega_0=\frac{2\pi}{20}=\frac{\pi}{10} \mbox{ and } T_1 = 5 $

Therefore

$ \chi(\omega)=\sum_{k=-\infty}^{\infty}2\pi\frac{sin(k\frac{\pi}{10} 5)}{\pi k}\delta(\omega-k\frac{\pi}{10})=\sum_{k=-\infty}^{\infty}2\frac{sin(k\frac{\pi}{2})}{ k}\delta(\omega-k\frac{\pi}{10}) $

--Cmcmican 21:13, 21 February 2011 (UTC)

TA's comments: Good Job. You may use \sin to produce a $ \sin $.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood