(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
=Exercise: Compute the Fourier series coefficients of the following signal==
+
[[Category:problem solving]]
 +
=Exercise: Compute the Fourier series coefficients of the following signal:=
 
<math>x(t)=\left\{\begin{array}{ll}1&\text{ when } 0\leq t <1 \\ 0& \text{ when } 1\leq t <2\end{array} \right.</math>
 
<math>x(t)=\left\{\begin{array}{ll}1&\text{ when } 0\leq t <1 \\ 0& \text{ when } 1\leq t <2\end{array} \right.</math>
  
x(t) periodic with period two.
+
x(t) periodic with period two.
 +
 
 +
After you have obtained the coefficients, write the Fourier series of x(t).
 
----
 
----
 
==Answer==
 
==Answer==
Please try to answer this question!
+
Can somebody finish the following computation?
  
 +
<math>
 +
\begin{align}
 +
a_n &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt \\
 +
& =\frac{1}{2} \int_{0}^2 x(t) e^{-j \frac{2\pi}{2}nt}dt \\
 +
& =\frac{1}{2} \int_{0}^1 (1) e^{-j \frac{2\pi}{2}nt}dt \\
 +
& =\frac{1}{2} (e^{-j \pi n}-1) \\
 +
\end{align}
 +
</math>
 +
----
 +
Comments:
  
 +
For <math>{\color{red}n\neq 0}</math>:
  
 +
<math>
 +
\begin{align}
 +
a_n &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt  {\color{OliveGreen}\surd}\\
 +
& =\frac{1}{2} \int_{0}^2 x(t) e^{-j \frac{2\pi}{2}nt}dt {\color{OliveGreen}\surd} \\
 +
& =\frac{1}{2} \int_{0}^1 (1) e^{-j \frac{2\pi}{2}nt}dt {\color{OliveGreen}\surd}\\
 +
&=\frac{1}{2} \left. \frac{e^{-j \frac{2\pi}{2}nt}}{{\color{red} -j \pi n }} \right|_0^1\text { (note that one should not divide by n if }n=0)\\
 +
& =\frac{1}{2} \frac{(e^{-j \pi n}-1)}{  {\color{red} -j \pi n }} \\
 +
\end{align}
 +
</math>
  
 +
Now deal with the case <math>{\color{red}n= 0}</math>: separately:
 +
 +
<math>
 +
{\color{red}
 +
\begin{align}
 +
a_0 &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T} 0  t}dt  \\
 +
& =\frac{1}{T} \int_{0}^T x(t) dt  \\
 +
&= \text{ average of } x(t) \text{ over one period} \\
 +
&= \frac{1}{2}
 +
\end{align}
 +
}
 +
</math>
  
 
----
 
----
 +
 +
Comments:
 +
 +
Then, the Fourier series expression of the x(t) will be
 +
 +
<math> 
 +
x(t) = \sum_{n=-\infty}^{\infty} a_n e^{j \frac{2\pi}{T} n t } = \frac{1}{2} + \sum_{n=-\infty,n\neq0}^{\infty} \frac{(e^{-j \pi n}-1)}{2(-j \pi n)} e^{j \pi n t }
 +
</math>
 +
 +
--[[User:han83|Jaemin]] 15:21, 22 September 2010 (UTC)
 +
 +
 +
----
 +
[[Recommended_exercise_Fourier_series_computation|More exercises on computing continuous-time Fourier series]]
 +
 
[[ECE301|Back to ECE301]]
 
[[ECE301|Back to ECE301]]

Latest revision as of 08:08, 15 February 2011

Exercise: Compute the Fourier series coefficients of the following signal:

$ x(t)=\left\{\begin{array}{ll}1&\text{ when } 0\leq t <1 \\ 0& \text{ when } 1\leq t <2\end{array} \right. $

x(t) periodic with period two.

After you have obtained the coefficients, write the Fourier series of x(t).


Answer

Can somebody finish the following computation?

$ \begin{align} a_n &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt \\ & =\frac{1}{2} \int_{0}^2 x(t) e^{-j \frac{2\pi}{2}nt}dt \\ & =\frac{1}{2} \int_{0}^1 (1) e^{-j \frac{2\pi}{2}nt}dt \\ & =\frac{1}{2} (e^{-j \pi n}-1) \\ \end{align} $


Comments:

For $ {\color{red}n\neq 0} $:

$ \begin{align} a_n &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt {\color{OliveGreen}\surd}\\ & =\frac{1}{2} \int_{0}^2 x(t) e^{-j \frac{2\pi}{2}nt}dt {\color{OliveGreen}\surd} \\ & =\frac{1}{2} \int_{0}^1 (1) e^{-j \frac{2\pi}{2}nt}dt {\color{OliveGreen}\surd}\\ &=\frac{1}{2} \left. \frac{e^{-j \frac{2\pi}{2}nt}}{{\color{red} -j \pi n }} \right|_0^1\text { (note that one should not divide by n if }n=0)\\ & =\frac{1}{2} \frac{(e^{-j \pi n}-1)}{ {\color{red} -j \pi n }} \\ \end{align} $

Now deal with the case $ {\color{red}n= 0} $: separately:

$ {\color{red} \begin{align} a_0 &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T} 0 t}dt \\ & =\frac{1}{T} \int_{0}^T x(t) dt \\ &= \text{ average of } x(t) \text{ over one period} \\ &= \frac{1}{2} \end{align} } $


Comments:

Then, the Fourier series expression of the x(t) will be

$ x(t) = \sum_{n=-\infty}^{\infty} a_n e^{j \frac{2\pi}{T} n t } = \frac{1}{2} + \sum_{n=-\infty,n\neq0}^{\infty} \frac{(e^{-j \pi n}-1)}{2(-j \pi n)} e^{j \pi n t } $

--Jaemin 15:21, 22 September 2010 (UTC)



More exercises on computing continuous-time Fourier series

Back to ECE301

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett