Line 13: Line 13:
 
a_n &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt \\
 
a_n &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt \\
 
  & =\frac{1}{2} \int_{0}^2 x(t) e^{-j \frac{2\pi}{2}nt}dt \\
 
  & =\frac{1}{2} \int_{0}^2 x(t) e^{-j \frac{2\pi}{2}nt}dt \\
& =
+
& =\frac{1}{2} \int_{0}^1 (1) e^{-j \frac{2\pi}{2}nt}dt \\
 +
& =\frac{1}{2} (e^{-j \pi n}-1) \\
 
\end{align}
 
\end{align}
 
</math>
 
</math>

Revision as of 08:54, 14 September 2010

Exercise: Compute the Fourier series coefficients of the following signal:

$ x(t)=\left\{\begin{array}{ll}1&\text{ when } 0\leq t <1 \\ 0& \text{ when } 1\leq t <2\end{array} \right. $

x(t) periodic with period two.

After you have obtained the coefficients, write the Fourier series of x(t).


Answer

Can somebody finish the following computation?

$ \begin{align} a_n &= \frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt \\ & =\frac{1}{2} \int_{0}^2 x(t) e^{-j \frac{2\pi}{2}nt}dt \\ & =\frac{1}{2} \int_{0}^1 (1) e^{-j \frac{2\pi}{2}nt}dt \\ & =\frac{1}{2} (e^{-j \pi n}-1) \\ \end{align} $



More exercises on computing continuous-time Fourier series

Back to ECE301

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin