(24 intermediate revisions by 3 users not shown)
Line 5: Line 5:
 
[[Category:signal processing]]   
 
[[Category:signal processing]]   
  
<center><font size= 4>
+
<center>
TITLE OF YOUR SLECTURE
+
<font size= 4>
 +
Topic 3:Fourier transform of "rep" and "comb"
 
</font size>
 
</font size>
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student JOE BLO
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Youqin Liu
  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
Line 15: Line 16:
 
----
 
----
 
----
 
----
ECE438 SELECTURE
 
  
<math>\int \sum_{k=-\infty}</math>
+
==1.INTRODUCTION:==
 +
The topic 3 is the Fourier Transform of the Comb and Rep function. In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.
  
st your slecture material here. Guidelines:
+
==2.THEORY:==
*If you wish to post your slecture anonymously, please contact your instructor to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.
+
*Rephrase the material in your own way, in your own words, based on Prof. Boutin's lecture material.
+
*Feel free to add your own examples or your own material.
+
*Focus on the clarity of your explanation. It must be clear, easily understandable.
+
*Type text using wikitext markup language. Do not post a pdf. Do not upload a word file.
+
*Type all equations using latex code between <nowiki> <math> </math> </nowiki> tags.
+
*You may include graphs, pictures, animated graphics, etc.
+
*You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages.
+
  
1.Introduction: In my selecture, I am going to introduce the definition, the Furior Transformation and the relationship of Comb function and Rep function.
+
(1)
2.Theory:
+
 
 +
[[Image:Combfunction3.jpg]]
 +
 
 +
Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf
 +
 
 +
 
 +
<font size= 4>According to the definition of the comb function: </font size>
 +
 
 +
 
 +
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>
 +
 
 +
 
 +
<font size= 4> where</font size> <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>
 +
 
 +
 
 +
<font size= 4>Do the Fourier Transform to the function:</font size>
 +
 
 +
 
 +
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big)</math>
 +
 
 +
 
 +
<font size= 4>
 +
According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.</font size>
 +
 
 +
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big)</math>
 +
 
 +
                  <math>=x(f)*F\big(P_T(t)\big)</math>
 +
 
 +
<font size= 4>Because </font size>  <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>  <font size= 4> is a periodic function , so we can expand it to Fourier series. </font size>
 +
 
 +
 
 +
<math>P_T(t)=\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} </math>
 +
 
 +
 
 +
<math>\Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt</math>
 +
 
 +
      <math>=\frac{1}{T}</math>
 +
 
 +
<font size= 4>So, </font size>  <math>P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} </math>
 +
 
 +
          <math>=\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T}) </math>
 +
 
 +
          <math>=\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T})</math>
 +
 
 +
          <math>= \frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
<font size= 4>So, </font size>  <math>F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
                    <math>=\frac{1}{T}X(f)*P_{1/T}(f)</math>
 +
 
 +
                    <math>=\frac{1}{T}rep_{1/T}X(f)</math>
  
IMPORTANT: DO NOT PLAGIARIZE. If you use other material than Prof. Boutin's lecture material, you must cite your sources. Do not copy text word for word from another source; rephrase everything using your own words. Similarly for graphs, illustrations, pictures, etc. Make your own! Do not copy them from other sources.
 
 
----
 
----
----
+
<font size =4>(2)</font size>
----
+
 
(create a question page and put a link below)
+
[[Image:Repfunction3.jpg]]
 +
 
 +
Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf
 +
 
 +
<font size= 4>According to the definition of Rep function:</font size>
 +
 
 +
 
 +
        <math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
 +
 
 +
                    <math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
 +
 
 +
 
 +
<font size= 4>So, </font size><math>F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg)</math>
 +
 
 +
 
 +
 
 +
<font size= 4>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
 +
 
 +
          <math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
<font size= 4>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
                    <math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>
 +
 
 
==[[slecture_title_of_slecture_review|Questions and comments]]==
 
==[[slecture_title_of_slecture_review|Questions and comments]]==
  
 
If you have any questions, comments, etc. please post them on [[slecture_title_of_slecture_review|this page]].
 
If you have any questions, comments, etc. please post them on [[slecture_title_of_slecture_review|this page]].
 
----
 
----
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
+
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]

Latest revision as of 18:55, 16 March 2015


Topic 3:Fourier transform of "rep" and "comb"

A slecture by ECE student Youqin Liu

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



1.INTRODUCTION:

The topic 3 is the Fourier Transform of the Comb and Rep function. In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.

2.THEORY:

(1)

Combfunction3.jpg

Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf


According to the definition of the comb function:


$ comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t) $


where $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $


Do the Fourier Transform to the function:


$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big) $


According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.

$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big) $

                 $ =x(f)*F\big(P_T(t)\big) $

Because $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $ is a periodic function , so we can expand it to Fourier series.


$ P_T(t)=\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T}  $


$ \Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt $

      $ =\frac{1}{T} $

So, $ P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $

         $ =\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T})  $
         $ =\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T}) $
         $ = \frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f) $

                    $ =\frac{1}{T}X(f)*P_{1/T}(f) $
  
                    $ =\frac{1}{T}rep_{1/T}X(f) $

(2)

Repfunction3.jpg

Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf

According to the definition of Rep function:


        $ rep_T\big(x(t)\big):= x(t)*P_T(t) $
                   $ =x(t)*\sum_{n=-\infty}^\infty \delta(t-nT) $


So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg) $


Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:

         $ F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f) $

                   $ =\frac{1}{T}x(f)\cdot P_{1/T}(f) $ 

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison