Line 31: Line 31:
 
</font size>
 
</font size>
  
[[Image:Combfunction Liu.jpg]]
+
[[Image:Comb_liu.jpg]]
 
Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf
 
Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf
  

Revision as of 17:47, 1 October 2014


Topic 3:Fourier transform of "rep" and "comb"

A slecture by ECE student Youqin Liu

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



ECE438 SELECTURE


File:Rep Youqin.jpg

1.INTRODUCTION:

The topic 3 is the Fourier Transform of the Comb and Rep function. In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.

2.THEORY:

File:Comb liu.jpg Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf


(1)According to the definition of the comb function:


$ comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t) $


where $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $


Do the Fourier Transform to the function:


$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big) $


According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.

$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big) $

                 $ =x(f)*F\big(P_T(t)\big) $

Because $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $ is a periodic function , so we can expand it to Fourier series.


$ P_T(t)=\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T}  $


$ \Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt $

      $ =\frac{1}{T} $

So, $ P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $

         $ =\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T})  $
         $ =\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T}) $
         $ = \frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f) $

                    $ =\frac{1}{T}X(f)*P_{1/T}(f) $
  
                    $ =\frac{1}{T}rep_{1/T}X(f) $


Repfunction.jpg Reference:https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf

(2)According to the definition of Rep function:


        $ rep_T\big(x(t)\big):= x(t)*P_T(t) $
                   $ =x(t)*\sum_{n=-\infty}^\infty \delta(t-nT) $


So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg) $


Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:

         $ F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f) $

                   $ =\frac{1}{T}x(f)\cdot P_{1/T}(f) $ 


(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood