Line 20: Line 20:
 
[[Image:rep_Youqin.jpg]]
 
[[Image:rep_Youqin.jpg]]
  
<math>
 
\begin{align}
 
\bar f(x) &= \oint_S g(x) dx \\
 
&= \int_a^b g(x) dx \\
 
&= \frac{\mu_0}{2 \pi a \cdot b}
 
\end{align}
 
</math>
 
 
 
 
<font size= 5>
 
<font size= 5>
'''1.INTRODUCTION:  
+
1.INTRODUCTION:  
 +
</font size>
 +
<font size= 3>
  
The topic 3 is the Fourier Transform of the Comb and Rep function. In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.
+
The topic 3 is the Fourier Transform of the Comb and Rep function. In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.</font size>
  
'''2.THEORY:'''
+
<font size= 5>
 +
2.THEORY:  
 
</font size>
 
</font size>
  
 
<font size= 3>(1)According to the definition of the comb function: </font size>
 
<font size= 3>(1)According to the definition of the comb function: </font size>
 +
 +
 
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>  
 
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>  
  
Line 60: Line 56:
  
  
<math>P_T(t)\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} </math>
+
<math>P_T(t)=\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} </math>
  
  
Line 85: Line 81:
  
  
<math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
+
        <math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
  
            <math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
+
                    <math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
  
  
Line 98: Line 94:
 
<font size= 3>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
 
<font size= 3>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
  
    <math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
+
          <math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
  
 
<font size= 3>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
 
<font size= 3>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
 
  
 
                     <math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>  
 
                     <math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>  
  
  
----
 
----
 
----
 
 
(create a question page and put a link below)
 
(create a question page and put a link below)
 
==[[slecture_title_of_slecture_review|Questions and comments]]==
 
==[[slecture_title_of_slecture_review|Questions and comments]]==

Revision as of 17:15, 1 October 2014


Topic 3:Fourier transform of "rep" and "comb"

A slecture by ECE student Youqin Liu

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



ECE438 SELECTURE


File:Rep Youqin.jpg

1.INTRODUCTION:

The topic 3 is the Fourier Transform of the Comb and Rep function. In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.

2.THEORY:

(1)According to the definition of the comb function:


$ comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t) $


where $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $


Do the Fourier Transform to the function:


$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big) $


According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.

$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big) $

                 $ =x(f)*F\big(P_T(t)\big) $

Because $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $ is a periodic function , so we can expand it to Fourier series.


$ P_T(t)=\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T}  $


$ \Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt $

      $ =\frac{1}{T} $

So, $ P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $

         $ =\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T})  $
         $ =\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T}) $
         $ = \frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f) $

                    $ =\frac{1}{T}X(f)*P_{1/T}(f) $
  
                    $ =\frac{1}{T}rep_{1/T}X(f) $


(2)According to the definition of Rep function:


        $ rep_T\big(x(t)\big):= x(t)*P_T(t) $
                   $ =x(t)*\sum_{n=-\infty}^\infty \delta(t-nT) $


So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg) $


(3)Graph of the relationship between comb and rep function


Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:

         $ F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f) $

                   $ =\frac{1}{T}x(f)\cdot P_{1/T}(f) $ 


(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood