Line 6: Line 6:
  
 
<center><font size= 10>
 
<center><font size= 10>
TITLE OF YOUR SLECTURE
+
Topic 3:Fourier transform of "rep" and "comb"
 
</font size>
 
</font size>
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student JOE BLO
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Youqin Liu
  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
Line 19: Line 19:
 
   
 
   
 
<font size= 5>
 
<font size= 5>
'''1.Introduction: In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.
+
'''1.INTRODUCTION:  
  
2.THEORY:'''  
+
In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.
 +
 
 +
'''2.THEORY:'''  
 
</font size>
 
</font size>
  
 
<font size= 3>(1)According to the definition of the comb function: </font size>
 
<font size= 3>(1)According to the definition of the comb function: </font size>
 
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>  
 
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>  
 +
  
 
<font size= 3> where</font size> <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>
 
<font size= 3> where</font size> <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>
 +
  
 
<font size= 3>Do the Fourier Transform to the function:</font size>
 
<font size= 3>Do the Fourier Transform to the function:</font size>
 +
  
 
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big)</math>
 
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big)</math>
 +
  
 
<font size= 3>
 
<font size= 3>
Line 63: Line 69:
 
    
 
    
 
                     <math>=\frac{1}{T}rep_{1/T}X(f)</math>
 
                     <math>=\frac{1}{T}rep_{1/T}X(f)</math>
 +
  
 
<font size= 3>(2)According to the definition of Rep function:</font size>
 
<font size= 3>(2)According to the definition of Rep function:</font size>
 +
  
 
<math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
 
<math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
  
<math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
+
            <math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
  
  
<font size= 3>So, </font size><math>F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg)</math>
+
<font size= 4>So, </font size><math>F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg)</math>
 +
 
 +
 
 +
<font size= 3>[https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RepComb.pdf (3)Graph of the relationship between comb and rep function]</font size>
  
  
 
<font size= 3>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
 
<font size= 3>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
  
<math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
+
    <math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
  
 
<font size= 3>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
 
<font size= 3>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
  
  
<math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>  
+
                    <math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>  
 
+
  
  

Revision as of 19:28, 30 September 2014


Topic 3:Fourier transform of "rep" and "comb"

A slecture by ECE student Youqin Liu

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



ECE438 SELECTURE


1.INTRODUCTION:

In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.

2.THEORY:

(1)According to the definition of the comb function: $ comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t) $


where $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $


Do the Fourier Transform to the function:


$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big) $


According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.

$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big) $

                 $ =x(f)*F\big(P_T(t)\big) $

Because $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $ is a periodic function , so we can expand it to Fourier series.


$ P_T(t)\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $


$ \Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt $

      $ =\frac{1}{T} $

So, $ P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $

         $ =\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T})  $
         $ =\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T}) $
         $ = \frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f) $

                    $ =\frac{1}{T}X(f)*P_{1/T}(f) $
  
                    $ =\frac{1}{T}rep_{1/T}X(f) $


(2)According to the definition of Rep function:


$ rep_T\big(x(t)\big):= x(t)*P_T(t) $

            $ =x(t)*\sum_{n=-\infty}^\infty \delta(t-nT) $


So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg) $


(3)Graph of the relationship between comb and rep function


Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:

   $ F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f) $


                   $ =\frac{1}{T}x(f)\cdot P_{1/T}(f) $ 





(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett