Line 5: Line 5:
 
[[Category:signal processing]]   
 
[[Category:signal processing]]   
  
<center><font size= 4>
+
<center><font size= 10>
 
TITLE OF YOUR SLECTURE
 
TITLE OF YOUR SLECTURE
 
</font size>
 
</font size>
Line 17: Line 17:
 
ECE438 SELECTURE
 
ECE438 SELECTURE
  
<math>\int \sum_{k=-\infty}</math>
+
 +
<font size= 5>
 +
'''1.Introduction: In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.
 +
 
 +
2.THEORY:'''
 +
</font size>
 +
 
 +
<font size= 3>(1)According to the definition of the comb function: </font size>
 +
<math>comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t)</math>
 +
 
 +
<font size= 3> where</font size> <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>
 +
 
 +
<font size= 3>Do the Fourier Transform to the function:</font size>
 +
 
 +
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big)</math>
 +
 
 +
<font size= 3>
 +
According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.</font size>
 +
 
 +
<math>F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big)</math>
 +
 
 +
                  <math>=x(f)*F\big(P_T(t)\big)</math>
 +
 
 +
<font size= 3>Because </font size>  <math>P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT)</math>  <font size= 3> is a periodic function , so we can expand it to Fourier series. </font size>
 +
 
 +
 
 +
<math>P_T(t)\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} </math>
 +
 
 +
 
 +
<math>\Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt</math>
 +
 
 +
      <math>=\frac{1}{T}</math>
 +
 
 +
<font size= 3>So, </font size>  <math>P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} </math>
 +
 
 +
          <math>=\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T}) </math>
 +
 
 +
          <math>=\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T})</math>
 +
 
 +
          <math>= \frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
<font size= 3>So, </font size>  <math>F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
                    <math>=\frac{1}{T}X(f)*P_{1/T}(f)</math>
 +
 
 +
                    <math>=\frac{1}{T}rep_{1/T}X(f)</math>
 +
 
 +
<font size= 3>(2)According to the definition of Rep function:</font size>
 +
 
 +
<math>rep_T\big(x(t)\big):= x(t)*P_T(t)</math>
 +
 
 +
<math>=x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)</math>
 +
 
 +
 
 +
<font size= 3>So, </font size><math>F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg)</math>
 +
 
 +
 
 +
<font size= 3>Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:</font size>
 +
 
 +
<math>F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
<font size= 3>So, </font size> <math>F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f)</math>
 +
 
 +
 
 +
<math>=\frac{1}{T}x(f)\cdot P_{1/T}(f)</math>  
  
st your slecture material here. Guidelines:
 
*If you wish to post your slecture anonymously, please contact your instructor to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.
 
*Rephrase the material in your own way, in your own words, based on Prof. Boutin's lecture material.
 
*Feel free to add your own examples or your own material.
 
*Focus on the clarity of your explanation. It must be clear, easily understandable.
 
*Type text using wikitext markup language. Do not post a pdf. Do not upload a word file.
 
*Type all equations using latex code between <nowiki> <math> </math> </nowiki> tags.
 
*You may include graphs, pictures, animated graphics, etc.
 
*You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages.
 
  
1.Introduction: In my selecture, I am going to introduce the definition, the Furior Transformation and the relationship of Comb function and Rep function.
 
2.Theory:
 
  
IMPORTANT: DO NOT PLAGIARIZE. If you use other material than Prof. Boutin's lecture material, you must cite your sources. Do not copy text word for word from another source; rephrase everything using your own words. Similarly for graphs, illustrations, pictures, etc. Make your own! Do not copy them from other sources.
 
 
----
 
----
 
----
 
----

Revision as of 19:17, 30 September 2014


TITLE OF YOUR SLECTURE

A slecture by ECE student JOE BLO

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



ECE438 SELECTURE


1.Introduction: In my selecture, I am going to introduce the definition, the Fourier Transformation and the relationship of Comb function and Rep function.

2.THEORY:

(1)According to the definition of the comb function: $ comb_T\big(X(t)\big)= x(t)\cdot\ P_T(t) $

where $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $

Do the Fourier Transform to the function:

$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\cdot P_T(t)\big) $

According to the property of Fourier Transformation, the multiplication in the time domain is equal to the convolution in the frequency domain.

$ F\bigg(comb_T\big(x(t)\big)\bigg) = F\big(x(t)\big)* F\big(P_T(t)\big) $

                 $ =x(f)*F\big(P_T(t)\big) $

Because $ P_T(t)= \sum_{n=-\infty}^\infty \delta(t-nT) $ is a periodic function , so we can expand it to Fourier series.


$ P_T(t)\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $


$ \Rightarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt $

      $ =\frac{1}{T} $

So, $ P_T(t) = \frac{1}{T}\sum_{n=-\infty}^\infty F_n e^{jn\cdot 2\pi t/T} $

         $ =\sum_{n=-\infty}^\infty \frac{1}{T} F(e^{jn\cdot 2\pi t/T})  $
         $ =\sum_{n=-\infty}^\infty \frac{1}{T} \delta(f-\frac{n}{T}) $
         $ = \frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(comb_T\big(x(t)\big)\bigg)=X(f)*\frac{1}{T}P_{1/T}(f) $

                    $ =\frac{1}{T}X(f)*P_{1/T}(f) $
  
                    $ =\frac{1}{T}rep_{1/T}X(f) $

(2)According to the definition of Rep function:

$ rep_T\big(x(t)\big):= x(t)*P_T(t) $

$ =x(t)*\sum_{n=-\infty}^\infty \delta(t-nT) $


So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=F\bigg(x(t)*\sum_{n=-\infty}^\infty \delta(t-nT)\bigg) $


Use the impluse-train we get previously, according to the conclusion we get from Fourier Transformation of it, we know:

$ F\big(P_T(t)\big)=\frac{1}{T}P_{1/T}(f) $

So, $ F\bigg(rep_T\big(x(t)\big)\bigg)=x(f)\cdot\frac{1}{T}P_{1/T}(f) $


$ =\frac{1}{T}x(f)\cdot P_{1/T}(f) $





(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett