Line 53: Line 53:
 
<math> \begin{align} \\  
 
<math> \begin{align} \\  
  
  X({\color{red}2\pi f}) & = \frac{\pi }{j}\ [\delta (\color{red}2\pi f} \\
+
  X({\color{red}2\pi f}) & = \frac{\pi }{j}\ [\delta (2\pi f - 2\pi f_o ) - \delta (2\pi f + 2\pi f_o )]
 +
\\
 
& = {\color{red}2\pi} \delta ({\color{red}2\pi}(f - f_o )\\
 
& = {\color{red}2\pi} \delta ({\color{red}2\pi}(f - f_o )\\
 
& = \delta (f - f_o )
 
& = \delta (f - f_o )

Revision as of 13:26, 18 September 2014


Fourier Transform as a Function of Frequency w Versus Frequency f (in Hertz)

A slecture by ECE student Randall Cochran

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



To show the relationship between the Fourier Transform of frequency $ \omega $ versus frequency $ f $ (in hertz) we start with the definitions: $ X(w)=\int\limits_{-\infty}^{\infty} x(t)e^{-jwt} dt \qquad \qquad \qquad \qquad X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt $


now we let $ \omega = 2\pi f $

$ X(2\pi f)=\int\limits_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt $

making $ X(2\pi f) = X(f) $


Examples of the relationship can be shown by starting with known CTFT pairs:

Example 1.

$ x(t)= e^{j\omega_o t} \qquad \qquad X(\omega ) = 2\pi \delta (\omega - \omega_o ) $

Again we will let $ \omega = 2\pi f $ in our Fourier Transform $ X(f) $ , and we will use the scaling property of the Dirac$ \delta $ Function: $ c\delta (ct) = \delta (t) $

$ \begin{align} \\ X({\color{red}2\pi f}) & = 2\pi \delta ({\color{red}2\pi f} - ({\color{red}2\pi f_o}))\\ & = {\color{red}2\pi} \delta ({\color{red}2\pi}(f - f_o )\\ & = \delta (f - f_o ) \end{align} $

And previously it was shown that $ X(2\pi f) = X(f) $ completing the change of variables.

Example 2.

$ x(t) = sin(\omega t) \qquad \qquad X(\omega ) = \frac{\pi }{j}\ [\delta (\omega - \omega_o ) - \delta (\omega + \omega_o )] $

As earlier we will let $ \omega = 2\pi f $ in our Fourier Transform $ X(f) $ , and we will use the scaling property of the Dirac$ \delta $ Function: $ c\delta (ct) = \delta (t) $

$ \begin{align} \\ X({\color{red}2\pi f}) & = \frac{\pi }{j}\ [\delta (2\pi f - 2\pi f_o ) - \delta (2\pi f + 2\pi f_o )] \\ & = {\color{red}2\pi} \delta ({\color{red}2\pi}(f - f_o )\\ & = \delta (f - f_o ) \end{align} $






(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett