Line 31: Line 31:
 
Example 1. <math>x(t)= e^{j\omega_o t} \qquad \qquad X(f) = 2\pi \delta (\omega - \omega_o )</math>
 
Example 1. <math>x(t)= e^{j\omega_o t} \qquad \qquad X(f) = 2\pi \delta (\omega - \omega_o )</math>
  
Again we will let X(<math>2\pi f</math>) = X(<math>f</math>)
+
Again we will let <math>\omega</math> = 2<math>\pi</math><math>f</math> in our Fourier Transform <math>X(f)</math>
 
+
  
  

Revision as of 12:06, 18 September 2014


Fourier Transform as a Function of Frequency w Versus Frequency f (in Hertz)

A slecture by ECE student Randall Cochran

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



To show the relationship between the Fourier Transform of frequency $ \omega $ versus frequency $ f $ (in hertz) we start with the definitions: $ X(w)=\int\limits_{-\infty}^{\infty} x(t)e^{-jwt} dt \qquad \qquad \qquad \qquad X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt $


now we let $ \omega $ = 2$ \pi $$ f $

$ X(2\pi f)=\int\limits_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt $

making X($ 2\pi f $) = X($ f $)


Examples of the relationship can be shown by starting with known CTFT pairs:

Example 1. $ x(t)= e^{j\omega_o t} \qquad \qquad X(f) = 2\pi \delta (\omega - \omega_o ) $

Again we will let $ \omega $ = 2$ \pi $$ f $ in our Fourier Transform $ X(f) $





(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn