(2 intermediate revisions by one other user not shown)
Line 16: Line 16:
 
----
 
----
 
To show the relationship between the Fourier Transform of frequency <math>\omega</math> versus frequency <math>f</math> (in hertz) we start with the definitions:
 
To show the relationship between the Fourier Transform of frequency <math>\omega</math> versus frequency <math>f</math> (in hertz) we start with the definitions:
 +
 
<math>X(w)=\int\limits_{-\infty}^{\infty} x(t)e^{-jwt} dt  \qquad \qquad \qquad \qquad  X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt </math>
 
<math>X(w)=\int\limits_{-\infty}^{\infty} x(t)e^{-jwt} dt  \qquad \qquad \qquad \qquad  X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt </math>
  
Line 65: Line 66:
  
 
[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009  
 
[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009  
 
 
  
 
----
 
----
 
----
 
----
 +
==[[Fourier_Transform_as_a_FUnction_of_Frequency_w_versus_Frequency_f_in_Hertz_review|Questions and comments]]==
 +
 +
If you have any questions, comments, etc. please post them on [[Fourier_Transform_as_a_FUnction_of_Frequency_w_versus_Frequency_f_in_Hertz_review|this page]].
 
----
 
----
(create a question page and put a link below)
+
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]
==[[slecture_title_of_slecture_review|Questions and comments]]==
+
 
+
If you have any questions, comments, etc. please post them on [[RCochran_slecture_review|this page]].
+
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
+

Latest revision as of 09:50, 14 March 2015


Fourier Transform as a Function of Frequency w Versus Frequency f (in Hertz)

A slecture by ECE student Randall Cochran

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



To show the relationship between the Fourier Transform of frequency $ \omega $ versus frequency $ f $ (in hertz) we start with the definitions:

$ X(w)=\int\limits_{-\infty}^{\infty} x(t)e^{-jwt} dt \qquad \qquad \qquad \qquad X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt $


now we let $ \omega = 2\pi f $

$ X(2\pi f)=\int\limits_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt $

making $ X(2\pi f) = X(f) $


Examples of the relationship can be shown by starting with known CTFT pairs:

Example 1.

$ x(t)= e^{j\omega_o t} \qquad \qquad X(\omega ) = 2\pi \delta (\omega - \omega_o ) $

Again we will let $ \omega = 2\pi f $ in our Fourier Transform $ X(f) $ , and we will use the scaling property of the Dirac$ \delta $ Function: $ c\delta (ct) = \delta (t) $

$ \begin{align} \\ X({\color{red}2\pi f}) & = 2\pi \delta ({\color{red}2\pi f} - ({\color{red}2\pi f_o}))\\ & = {\color{red}2\pi} \delta ({\color{red}2\pi}(f - f_o )\\ & = \delta (f - f_o ) \end{align} $

And previously it was shown that $ X(2\pi f) = X(f) $ completing the change of variables.

Example 2.

$ x(t) = sin(\omega t) \qquad \qquad X(\omega ) = \frac{\pi }{j}\ [\delta (\omega - \omega_o ) - \delta (\omega + \omega_o )] $

As earlier we will let $ \omega = 2\pi f $ in our Fourier Transform $ X(f) $ , and we will use the scaling property of the Dirac$ \delta $ Function: $ c\delta (ct) = \delta (t) $

$ \begin{align} \\ X({\color{red}2\pi f}) & = \frac{\pi }{j}\ [\delta ({\color{red}2\pi f} - {\color{red}2\pi f_o } ) - \delta ({\color{red}2\pi f} + {\color{red}2\pi f_o })]\\ & = \frac{\pi }{j}\ ( [ \delta ({\color{red}2\pi}(f - f_o ) - \delta({\color{red}2\pi} (f + f_o ))\\ & = \frac{\pi }{j}\ {\color{red}\frac{1}{2\pi }} ({\color{red}2\pi } [ \delta ( {\color{red}2\pi }(f - f_o ) - \delta({\color{red}2\pi} (f + f_o ))\\ & = \frac{1}{2j}\ ( \delta (f - f_o ) - \delta(f + f_o ))\\ \end{align} $


References


[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009



Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett