(123 intermediate revisions by 2 users not shown)
Line 6: Line 6:
  
 
<center><font size= 4>
 
<center><font size= 4>
Fourier Transform as a Function of frequency w versus frequency f (in Hertz)
+
'''Fourier Transform as a Function of Frequency ''w'' Versus Frequency f (in Hertz)'''
 
</font size>
 
</font size>
  
Line 15: Line 15:
 
----
 
----
 
----
 
----
Post your slecture material here. Guidelines:
+
To show the relationship between the Fourier Transform of frequency <math>\omega</math> versus frequency <math>f</math> (in hertz) we start with the definitions:
*If you wish to post your slecture anonymously, please contact your instructor to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.
+
 
*Rephrase the material in your own way, in your own words, based on Prof. Boutin's lecture material.
+
<math>X(w)=\int\limits_{-\infty}^{\infty} x(t)e^{-jwt} dt  \qquad \qquad \qquad \qquad  X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt </math>
*Feel free to add your own examples or your own material.
+
 
*Focus on the clarity of your explanation. It must be clear, easily understandable.
+
 
*Type text using wikitext markup language. Do not post a pdf. Do not upload a word file.
+
 
*Type all equations using latex code between <nowiki> <math> </math> </nowiki> tags.
+
now we let <math>\omega = 2\pi f</math>
*You may include graphs, pictures, animated graphics, etc.
+
 
*You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages.  
+
<math>X(2\pi f)=\int\limits_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt </math>
 +
 
 +
making <math>X(2\pi f) = X(f) </math>
 +
 
 +
 
 +
Examples of the relationship can be shown by starting with known CTFT pairs:
 +
 
 +
Example 1.
 +
<math>x(t)= e^{j\omega_o t} \qquad \qquad X(\omega ) = 2\pi \delta (\omega - \omega_o )</math>
 +
 
 +
Again we will let <math>\omega = 2\pi f</math> in our Fourier Transform <math>X(f)</math> , and we will use the scaling property of the Dirac<math>\delta</math> Function: <math>c\delta (ct) = \delta (t) </math>
 +
 
 +
<math> \begin{align} \\
 +
 
 +
X({\color{red}2\pi f}) & = 2\pi \delta ({\color{red}2\pi f} - ({\color{red}2\pi f_o}))\\
 +
& = {\color{red}2\pi} \delta ({\color{red}2\pi}(f - f_o )\\
 +
& = \delta (f - f_o )
 +
\end{align}
 +
</math>
 +
 
 +
And previously it was shown that <math>X(2\pi f) = X(f) </math> completing the change of variables.
 +
 
 +
Example 2.
 +
 
 +
<math> x(t)  = sin(\omega t) \qquad \qquad X(\omega ) = \frac{\pi }{j}\ [\delta (\omega - \omega_o ) - \delta (\omega + \omega_o )]
 +
</math>
 +
 
 +
As earlier we will let <math>\omega = 2\pi f</math> in our Fourier Transform <math>X(f)</math> , and we will use the scaling property of the Dirac<math>\delta</math> Function: <math>c\delta (ct) = \delta (t) </math>
 +
 
 +
<math> \begin{align} \\
 +
 
 +
X({\color{red}2\pi f}) & = \frac{\pi }{j}\ [\delta ({\color{red}2\pi f} - {\color{red}2\pi f_o } ) - \delta ({\color{red}2\pi f} + {\color{red}2\pi f_o })]\\
 +
& = \frac{\pi }{j}\ ( [ \delta ({\color{red}2\pi}(f - f_o ) - \delta({\color{red}2\pi} (f + f_o ))\\
 +
& = \frac{\pi }{j}\ {\color{red}\frac{1}{2\pi }}  ({\color{red}2\pi } [ \delta ( {\color{red}2\pi }(f - f_o ) - \delta({\color{red}2\pi} (f + f_o ))\\
 +
& = \frac{1}{2j}\ (  \delta (f - f_o ) - \delta(f + f_o ))\\
 +
\end{align}
 +
</math>
 +
 
 +
 
 +
References
 +
 
 +
 
 +
[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009
  
IMPORTANT: DO NOT PLAGIARIZE. If you use other material than Prof. Boutin's lecture material, you must cite your sources. Do not copy text word for word from another source; rephrase everything using your own words. Similarly for graphs, illustrations, pictures, etc. Make your own! Do not copy them from other sources.
 
----
 
 
----
 
----
 
----
 
----
(create a question page and put a link below)
+
==[[Fourier_Transform_as_a_FUnction_of_Frequency_w_versus_Frequency_f_in_Hertz_review|Questions and comments]]==
==[[slecture_title_of_slecture_review|Questions and comments]]==
+
  
If you have any questions, comments, etc. please post them on [[slecture_title_of_slecture_review|this page]].
+
If you have any questions, comments, etc. please post them on [[Fourier_Transform_as_a_FUnction_of_Frequency_w_versus_Frequency_f_in_Hertz_review|this page]].
 
----
 
----
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
+
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]

Latest revision as of 09:50, 14 March 2015


Fourier Transform as a Function of Frequency w Versus Frequency f (in Hertz)

A slecture by ECE student Randall Cochran

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



To show the relationship between the Fourier Transform of frequency $ \omega $ versus frequency $ f $ (in hertz) we start with the definitions:

$ X(w)=\int\limits_{-\infty}^{\infty} x(t)e^{-jwt} dt \qquad \qquad \qquad \qquad X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt $


now we let $ \omega = 2\pi f $

$ X(2\pi f)=\int\limits_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt $

making $ X(2\pi f) = X(f) $


Examples of the relationship can be shown by starting with known CTFT pairs:

Example 1.

$ x(t)= e^{j\omega_o t} \qquad \qquad X(\omega ) = 2\pi \delta (\omega - \omega_o ) $

Again we will let $ \omega = 2\pi f $ in our Fourier Transform $ X(f) $ , and we will use the scaling property of the Dirac$ \delta $ Function: $ c\delta (ct) = \delta (t) $

$ \begin{align} \\ X({\color{red}2\pi f}) & = 2\pi \delta ({\color{red}2\pi f} - ({\color{red}2\pi f_o}))\\ & = {\color{red}2\pi} \delta ({\color{red}2\pi}(f - f_o )\\ & = \delta (f - f_o ) \end{align} $

And previously it was shown that $ X(2\pi f) = X(f) $ completing the change of variables.

Example 2.

$ x(t) = sin(\omega t) \qquad \qquad X(\omega ) = \frac{\pi }{j}\ [\delta (\omega - \omega_o ) - \delta (\omega + \omega_o )] $

As earlier we will let $ \omega = 2\pi f $ in our Fourier Transform $ X(f) $ , and we will use the scaling property of the Dirac$ \delta $ Function: $ c\delta (ct) = \delta (t) $

$ \begin{align} \\ X({\color{red}2\pi f}) & = \frac{\pi }{j}\ [\delta ({\color{red}2\pi f} - {\color{red}2\pi f_o } ) - \delta ({\color{red}2\pi f} + {\color{red}2\pi f_o })]\\ & = \frac{\pi }{j}\ ( [ \delta ({\color{red}2\pi}(f - f_o ) - \delta({\color{red}2\pi} (f + f_o ))\\ & = \frac{\pi }{j}\ {\color{red}\frac{1}{2\pi }} ({\color{red}2\pi } [ \delta ( {\color{red}2\pi }(f - f_o ) - \delta({\color{red}2\pi} (f + f_o ))\\ & = \frac{1}{2j}\ ( \delta (f - f_o ) - \delta(f + f_o ))\\ \end{align} $


References


[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009



Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics