Line 1: Line 1:
{|
+
=How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math> =
|-
+
 
| align="left" style="padding-left: 0em;" | CT Fourier Transform
+
Recall:
|-
+
<math> \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
| <math> X(f)=\mathcal{X}(2\pi f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>  
+
 
|
+
 
|}
+
To obtain X(f), use the substitution
 +
 
 +
<math>\omage= 2 \pi f </math>. More specifically
 +
 
 +
<math>
 +
\begin{align}
 +
X(f) &=\mathcal{X}(2\pi f)\\
 +
&=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt
 +
\end{align}
 +
</math>  
 +
 +
----
 +
[[ECE438|Back to ECE438]]

Revision as of 10:00, 15 September 2010

How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of $ \omega $

Recall: $ \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $


To obtain X(f), use the substitution

$ \omage= 2 \pi f $. More specifically

$ \begin{align} X(f) &=\mathcal{X}(2\pi f)\\ &=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \end{align} $


Back to ECE438

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood