m
Line 32: Line 32:
 
{\mathcal X}(\omega)= \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}
 
{\mathcal X}(\omega)= \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}
 
</math>
 
</math>
 +
 +
<span style="color:red"> --------------------------------------------- </span>
  
 
set <math class="inline">\omega = \frac{2\pi k}{N}</math> and use the fact that <math>x[n]=0</math> for <math>n> N-1 </math> and for <math>n<0</math>
 
set <math class="inline">\omega = \frac{2\pi k}{N}</math> and use the fact that <math>x[n]=0</math> for <math>n> N-1 </math> and for <math>n<0</math>
 +
 +
  
 
<math>
 
<math>
 
{\mathcal X}(\frac{2\pi k}{N})= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{N} n} = X_{N}[k] </math> formula(1)
 
{\mathcal X}(\frac{2\pi k}{N})= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{N} n} = X_{N}[k] </math> formula(1)
 +
 +
<span style="color:red"> --------------------------------------------- </span>
 +
: <span style="color:red"> Why do you need this part? Shouldn't you get an expression for the M point DFT of x[n] instead? </span>
  
 
Now we can manipulate the DFT of y[n]
 
Now we can manipulate the DFT of y[n]

Revision as of 09:19, 26 October 2011


Practice Problem

(This problem clarifies how zero-padding a signal changes its DFT.)

let x[n] be a signal with duration N. More precisely, assume that $ x[n]=0 $ for $ n> N-1 $ and for $ n<0 $.

Let y[n] be the zero-padding of x[n] to length M>N:

$ y[n]= \left\{ \begin{array}{ll} x[n], & 0\leq n < N,\\ 0, & N \leq n <M. \end{array} \right. $

Show that the M point DFT of y[n] satisfies

$ Y_M [k] = {\mathcal X} \left( \frac{2 \pi k }{M}\right), \text{ for } k=0,1,\ldots, M-1, $

where $ {\mathcal X} (\omega) $ is the DTFT of x[n].

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ {\mathcal X}(\omega)= \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $

---------------------------------------------

set $ \omega = \frac{2\pi k}{N} $ and use the fact that $ x[n]=0 $ for $ n> N-1 $ and for $ n<0 $


$ {\mathcal X}(\frac{2\pi k}{N})= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{N} n} = X_{N}[k] $ formula(1)

---------------------------------------------

Why do you need this part? Shouldn't you get an expression for the M point DFT of x[n] instead?

Now we can manipulate the DFT of y[n]

$ \begin{align} Y_{M}[k]&= \sum_{n=0}^{M-1}y[n]e^{-j\frac{2\pi k}{M} n} \\ &= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{M} n} \ \ since \ y[n]=0 \ above \ N-1 \\ &= {\mathcal X}(\frac{2\pi k}{M}) \ \ by \ comparing \ to \ formula (1) \end{align} $


Answer 2

write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

EISL lab graduate

Mu Qiao