(New page: Category:ECE438 Category:ECE438Fall2011Boutin Category:problem solving Category:discrete Fourier transform = Practice Problem = (This problem clarifies how zero-padding a ...)
 
Line 29: Line 29:
 
----
 
----
 
==Answer 1==
 
==Answer 1==
write it here.
+
<math>
 +
{\mathcal X}(\omega)= \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}
 +
</math>
 +
 
 +
set <math class="inline">\omega = \frac{2\pi k}{N}</math> and use the fact that <math>x[n]=0</math> for <math>n> N-1 </math> and for <math>n<0</math>
 +
 
 +
<math>
 +
{\mathcal X}(\frac{2\pi k}{N})= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{N} n} = X[k] </math> formula(1)
 +
 
 +
Now we can manipulate the DFT of y[n]
 +
 
 +
<math>
 +
\begin{align}
 +
Y_{M}[k]&= \sum_{n=0}^{M-1}y[n]e^{-j\frac{2\pi k}{M} n} \\
 +
&= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{M} n}  \ \ since  \ y[n]=0 \ above \ N-1  \\
 +
&= {\mathcal X}(\frac{2\pi k}{M})  \ \ by \ comparing \ to \ formula (1)
 +
\end{align}
 +
</math>
 +
 
 +
 
 +
 
 
==Answer 2==
 
==Answer 2==
 
write it here.
 
write it here.

Revision as of 17:31, 24 October 2011


Practice Problem

(This problem clarifies how zero-padding a signal changes its DFT.)

let x[n] be a signal with duration N. More precisely, assume that $ x[n]=0 $ for $ n> N-1 $ and for $ n<0 $.

Let y[n] be the zero-padding of x[n] to length M>N:

$ y[n]= \left\{ \begin{array}{ll} x[n], & 0\leq n < N,\\ 0, & N \leq n <M. \end{array} \right. $

Show that the M point DFT of y[n] satisfies

$ Y_M [k] = {\mathcal X} \left( \frac{2 \pi k }{M}\right), \text{ for } k=0,1,\ldots, M-1, $

where $ {\mathcal X} (\omega) $ is the DTFT of x[n].

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ {\mathcal X}(\omega)= \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $

set $ \omega = \frac{2\pi k}{N} $ and use the fact that $ x[n]=0 $ for $ n> N-1 $ and for $ n<0 $

$ {\mathcal X}(\frac{2\pi k}{N})= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{N} n} = X[k] $ formula(1)

Now we can manipulate the DFT of y[n]

$ \begin{align} Y_{M}[k]&= \sum_{n=0}^{M-1}y[n]e^{-j\frac{2\pi k}{M} n} \\ &= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi k}{M} n} \ \ since \ y[n]=0 \ above \ N-1 \\ &= {\mathcal X}(\frac{2\pi k}{M}) \ \ by \ comparing \ to \ formula (1) \end{align} $


Answer 2

write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang