Revision as of 19:25, 20 June 2009 by Smattmul (Talk | contribs)

Compute $ E\infty $

$ x(t)=\cos(t)+j*\sin(t) $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\cos(t)+j\sin(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^{j*t}|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ E\infty=e^2/j*(\infty-0) $

$ E\infty=\infty $

Compute $ P\infty $

$ x(t)=\cos(t)+j*\sin(t) $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |x(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |\cos(t)+j\sin(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\int_{-\infty}^\infty |e^{j*t}|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ P\infty=\frac{\int_{-\infty}^\infty |e^2*e^{j*t}|dt}{\lim_{T \to \infty}2*T*\int_{-\infty}^\infty |e^2*e^{j*t}|dt)} $

$ P\infty=\frac{1}{\lim_{T \to \infty}2*T} $


$ P\infty=0 $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva