Compute $ E\infty $

$ x(t)=\cos(t)+j*\sin(t) $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\cos(t)+j\sin(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^{j*t}|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ E\infty=e^2/j*|e^{j*t}|_{-\infty}^{\infty} $

$ E\infty=e^2/j*(\infty-0) $

$ E\infty=\infty $

Compute $ P\infty $

$ x(t)=\cos(t)+j*\sin(t) $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |x(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |\cos(t)+j\sin(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\int_{-T}^T|e^{j*t}|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|e^2*e^{j*t}|dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|e^2*e^{j*t}|dt $

$ P\infty=\lim_{T \to \infty}\frac{\int_{-\infty}^\infty |e^2*e^{j*t}|dt}{2*T} $

$ P\infty=\frac{d(\int_{-\infty}^\infty |e^2*e^{j*t}|dt)}{d(2*T)} $

$ P\infty=\frac{e^{2*j*t}}{2} $

$ P\infty=\infty $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett