Line 8: Line 8:
 
----
 
----
 
==Question==
 
==Question==
Write it here
+
'''Part 1. (20 pts)'''
 +
 
 +
State and prove the Tchebycheff Inequality.
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.1|answers and discussions]]'''
 
----
 
----
=Solution 1 (retrived from [[ |here]])=
+
'''Part 2.'''
  
 +
'''(a) (7 pts)'''
  
 +
Let <math class="inline">A</math>  and <math class="inline">B</math>  be statistically independent events in the same probability space. Are <math class="inline">A</math>  and <math class="inline">B^{C}</math>  independent? (You must prove your result).
 +
 +
'''(b) (7 pts)'''
 +
 +
Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A  and B  for this to be true or not.)
 +
 +
''(c) (6 pts)'''
 +
 +
State the Axioms of Probability.
 +
 +
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.2|answers and discussions]]'''
 
----
 
----
==Solution 2==
+
'''Part 3.'''
Write it here.
+
 
 +
'''3. (20 pts)'''
 +
 
 +
Let the <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots</math>  be a sequence of random variables that converge in mean square to the random variable <math class="inline">\mathbf{X}</math> . Does the sequence also converge to <math class="inline">\mathbf{X}</math>  in probability? (A simple yes or no answer is not acceptable, you must derive the result.)
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.3|answers and discussions]]'''
 +
----
 +
'''Part 4.'''
 +
 
 +
'''4. (20 pts)'''
 +
 
 +
Let <math class="inline">\mathbf{X}_{t}</math>  be a band-limited white noise strictly stationary random process with bandwidth 10 KHz. It is also known that <math class="inline">\mathbf{X}_{t}</math>  is uniformly distributed between <math class="inline">\pm5</math>  volts. Find:
 +
 
 +
'''(a) (10 pts)'''
 +
 
 +
Let <math class="inline">\mathbf{Y}_{t}=\left(\mathbf{X}_{t}\right)^{2}</math> . Find the mean square value of <math class="inline">\mathbf{Y}_{t}</math> .
 +
 
 +
'''(b) (10 pts)'''
 +
 
 +
Let <math class="inline">\mathbf{X}_{t}</math>  be the input to a linear shift-invariant system with transfer function:
 +
<br>
 +
<math class="inline">H\left(f\right)=\begin{cases}
 +
\begin{array}{lll}
 +
1    \text{      for }\left|f\right|\leq5\text{ KHz}\\
 +
0.5    \text{  for }5\text{ KHz}\leq\left|f\right|\leq50\text{ KHz}\\
 +
0    \text{      elsewhere. }
 +
\end{array}\end{cases}</math>
 +
<br>
 +
 
 +
Find the mean and variance of the output.
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2000_Problem1.4|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 09:12, 27 June 2012


ECE Ph.D. Qualifying Exam: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, January 2001


Question

Part 1. (20 pts)

State and prove the Tchebycheff Inequality.

Click here to view student answers and discussions

Part 2.

(a) (7 pts)

Let $ A $ and $ B $ be statistically independent events in the same probability space. Are $ A $ and $ B^{C} $ independent? (You must prove your result).

(b) (7 pts)

Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A and B for this to be true or not.)

(c) (6 pts)'

State the Axioms of Probability.

Click here to view student answers and discussions

Part 3.

3. (20 pts)

Let the $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots $ be a sequence of random variables that converge in mean square to the random variable $ \mathbf{X} $ . Does the sequence also converge to $ \mathbf{X} $ in probability? (A simple yes or no answer is not acceptable, you must derive the result.)

Click here to view student answers and discussions

Part 4.

4. (20 pts)

Let $ \mathbf{X}_{t} $ be a band-limited white noise strictly stationary random process with bandwidth 10 KHz. It is also known that $ \mathbf{X}_{t} $ is uniformly distributed between $ \pm5 $ volts. Find:

(a) (10 pts)

Let $ \mathbf{Y}_{t}=\left(\mathbf{X}_{t}\right)^{2} $ . Find the mean square value of $ \mathbf{Y}_{t} $ .

(b) (10 pts)

Let $ \mathbf{X}_{t} $ be the input to a linear shift-invariant system with transfer function:
$ H\left(f\right)=\begin{cases} \begin{array}{lll} 1 \text{ for }\left|f\right|\leq5\text{ KHz}\\ 0.5 \text{ for }5\text{ KHz}\leq\left|f\right|\leq50\text{ KHz}\\ 0 \text{ elsewhere. } \end{array}\end{cases} $

Find the mean and variance of the output.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009