(One intermediate revision by one other user not shown)
Line 6: Line 6:
 
[[Category:probability]]
 
[[Category:probability]]
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, August 2005=
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
August 2005
 +
</center>
 +
----
 
----
 
----
 
==Question==
 
==Question==
'''Part 1. '''
+
'''1. (30 Points)'''
  
Write Statement here
+
Assume that <math class="inline">\mathbf{X}</math>  is a binomial distributed random variable with probability mass function (pmf) given by <math class="inline">p_{n}\left(k\right)=\left(\begin{array}{c}
 +
n\\
 +
k
 +
\end{array}\right)p^{k}\left(1-p\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n</math> where <math class="inline">0<p<1</math> .
 +
 
 +
'''(a)'''
 +
 
 +
Find the characteristic function of <math class="inline">\mathbf{X}</math> . (You must show how you derive the characteristic function.)
 +
 
 +
'''(b)'''
 +
 
 +
Compute the standard deviation of <math class="inline">\mathbf{X}</math> .
 +
 
 +
'''(c)'''
 +
 
 +
Find the value or values of <math class="inline">k</math>  for which <math class="inline">p_{n}\left(k\right)</math>  is maximum, and express the answer in terms of <math class="inline">p</math>  and <math class="inline">n</math> . Give the most complete answer to this question that you can.
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.1|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.1|answers and discussions]]'''
 
----
 
----
'''Part 2.'''
+
'''2. (30 Points)'''
 +
 
 +
Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots</math>  be a sequence of binomially distributed random variables, with <math class="inline">\mathbf{X}_{n}</math>  having probability mass function <math class="inline">p_{n}\left(k\right)=\left(\begin{array}{c}
 +
n\\
 +
k
 +
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n,</math> where <math class="inline">0<p_{n}<1</math>  for all <math class="inline">n=1,2,3,\cdots</math> . Show that if <math class="inline">np_{n}\rightarrow\lambda\text{ as }n\rightarrow\infty,</math> then the random sequence <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots</math>  converges in distribution to a Poisson random variable having mean <math class="inline">\lambda</math> .
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.2|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.2|answers and discussions]]'''
 
----
 
----
'''Part 3.'''
+
'''3. (40 Points)'''
  
Write question here.
+
Consider a homogeneous Poisson point process with rate <math class="inline">\lambda</math>  and points (event occurrence times) <math class="inline">\mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots</math> .
  
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.3|answers and discussions]]'''
+
'''(a)'''
----
+
'''Part 4.'''
+
  
Write question here.
+
Derive the pdf <math class="inline">f_{k}\left(t\right)</math>  of the <math class="inline">k</math> -th point <math class="inline">\mathbf{T}_{k}</math>  for arbitrary <math class="inline">k</math> .
  
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.4|answers and discussions]]'''
+
'''(b)'''
 +
 
 +
What kind of distribution does <math class="inline">\mathbf{T}_{1}</math>  have?
 +
 
 +
'''(c)'''
 +
 
 +
What is the conditional pdf of <math class="inline">\mathbf{T}_{k}</math>  given <math class="inline">\mathbf{T}_{k-1}=t_{0}</math> , where <math class="inline">t_{0}>0</math> ? (You can give the answer without derivation if you know it.)
 +
 
 +
'''(d)'''
 +
 
 +
Suppose you have a random number generator that produces independent, identically distributed (i.i.d. ) random variables <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots</math>  that are uniformaly distributed on the interval <math class="inline">\left(0,1\right)</math> . Explain how you could use these to simulate the Poisson points <math class="inline">\mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots</math>  describe above. Provide as complete an explanation as possible.
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.3|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 01:54, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2005



Question

1. (30 Points)

Assume that $ \mathbf{X} $ is a binomial distributed random variable with probability mass function (pmf) given by $ p_{n}\left(k\right)=\left(\begin{array}{c} n\\ k \end{array}\right)p^{k}\left(1-p\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n $ where $ 0<p<1 $ .

(a)

Find the characteristic function of $ \mathbf{X} $ . (You must show how you derive the characteristic function.)

(b)

Compute the standard deviation of $ \mathbf{X} $ .

(c)

Find the value or values of $ k $ for which $ p_{n}\left(k\right) $ is maximum, and express the answer in terms of $ p $ and $ n $ . Give the most complete answer to this question that you can.

Click here to view student answers and discussions

2. (30 Points)

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots $ be a sequence of binomially distributed random variables, with $ \mathbf{X}_{n} $ having probability mass function $ p_{n}\left(k\right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n, $ where $ 0<p_{n}<1 $ for all $ n=1,2,3,\cdots $ . Show that if $ np_{n}\rightarrow\lambda\text{ as }n\rightarrow\infty, $ then the random sequence $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots $ converges in distribution to a Poisson random variable having mean $ \lambda $ .


Click here to view student answers and discussions

3. (40 Points)

Consider a homogeneous Poisson point process with rate $ \lambda $ and points (event occurrence times) $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots $ .

(a)

Derive the pdf $ f_{k}\left(t\right) $ of the $ k $ -th point $ \mathbf{T}_{k} $ for arbitrary $ k $ .

(b)

What kind of distribution does $ \mathbf{T}_{1} $ have?

(c)

What is the conditional pdf of $ \mathbf{T}_{k} $ given $ \mathbf{T}_{k-1}=t_{0} $ , where $ t_{0}>0 $ ? (You can give the answer without derivation if you know it.)

(d)

Suppose you have a random number generator that produces independent, identically distributed (i.i.d. ) random variables $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots $ that are uniformaly distributed on the interval $ \left(0,1\right) $ . Explain how you could use these to simulate the Poisson points $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots $ describe above. Provide as complete an explanation as possible.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch