Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
  
==Question from [[ECE_PhD_QE_CNSIP_2000_Problem1|ECE QE CS Q1 August 2000]]==  
+
 
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
August 2000
 +
</center>
 +
----
 +
----
 +
=Part 2=
 
<math class="inline">\mathbf{X}\left(t\right)</math>  is a WSS process with its psd zero outside the interval <math class="inline">\left[-\omega_{max},\ \omega_{max}\right]</math> . If <math class="inline">R\left(\tau\right)</math>  is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the following: <math class="inline">R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right).</math> (Hint: <math class="inline">\left|\sin\theta\right|\leq\left|\theta\right|</math> ).
 
<math class="inline">\mathbf{X}\left(t\right)</math>  is a WSS process with its psd zero outside the interval <math class="inline">\left[-\omega_{max},\ \omega_{max}\right]</math> . If <math class="inline">R\left(\tau\right)</math>  is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the following: <math class="inline">R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right).</math> (Hint: <math class="inline">\left|\sin\theta\right|\leq\left|\theta\right|</math> ).
 
----
 
----

Latest revision as of 10:34, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2000



Part 2

$ \mathbf{X}\left(t\right) $ is a WSS process with its psd zero outside the interval $ \left[-\omega_{max},\ \omega_{max}\right] $ . If $ R\left(\tau\right) $ is the autocorrelation function of $ \mathbf{X}\left(t\right) $ , prove the following: $ R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right). $ (Hint: $ \left|\sin\theta\right|\leq\left|\theta\right| $ ).


Share and discuss your solutions below.


Solution 1 (retrived from here)

ref. pds means the power spectral density (More information on the Power Spectrum).

If $ \mathbf{X}\left(t\right) $ is real, then $ R_{\mathbf{X}}\left(\tau\right) $ is real and even function.

$ S_{\mathbf{X}}\left(\omega\right)=\int_{-\infty}^{\infty}R_{\mathbf{X}}\left(\tau\right)e^{-i\omega\tau}d\tau=\int_{-\infty}^{\infty}\left(R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)-R_{\mathbf{X}}\left(\tau\right)i\sin\left(\omega\tau\right)\right)d\tau $$ =2\int_{0}^{\infty}R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)d\tau\Longrightarrow\;\therefore S_{\mathbf{X}}\left(\omega\right)\text{ is real and even function.} $

$ R_{\mathbf{X}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\cos\left(\omega\tau\right)d\omega. $

$ R_{\mathbf{X}}\left(0\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega0}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)d\omega. $

$ R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(1-\cos\left(\omega\tau\right)\right)d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(2\sin^{2}\left(\frac{\omega\tau}{2}\right)\right)d\omega $$ \leq\frac{2}{\pi}\left|\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\sin^{2}\left(\frac{\omega\tau}{2}\right)d\omega\right|\leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left|\sin\left(\frac{\omega\tau}{2}\right)\right|^{2}d\omega $$ \leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left(\frac{\omega^{2}\tau^{2}}{4}\right)d\omega\leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|d\omega $$ \leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\pi R_{\mathbf{X}}\left(0\right)=\frac{\omega_{max}^{2}\tau^{2}}{2}R_{\mathbf{X}}\left(0\right). $

$ \therefore R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R_{\mathbf{X}}\left(0\right). $

$ \because\cos\left(\omega\tau\right)=\cos^{2}\left(\frac{\omega\tau}{2}\right)-\sin^{2}\left(\frac{\omega\tau}{2}\right)=1-2\sin^{2}\left(\frac{\omega\tau}{2}\right). $



Solution 2

Write it here.


Back to QE CS question 1, August 2000

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin