(One intermediate revision by one other user not shown)
Line 1: Line 1:
==Question from [[ECE_PhD_QE_CNSIP_2000_Problem1|ECE QE CS Q1 August 2000]]==  
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:random variables]]
 +
[[Category:probability]]
 +
 
 +
 
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
August 2000
 +
</center>
 +
----
 +
----
 +
=Part 2=
 
<math class="inline">\mathbf{X}\left(t\right)</math>  is a WSS process with its psd zero outside the interval <math class="inline">\left[-\omega_{max},\ \omega_{max}\right]</math> . If <math class="inline">R\left(\tau\right)</math>  is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the following: <math class="inline">R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right).</math> (Hint: <math class="inline">\left|\sin\theta\right|\leq\left|\theta\right|</math> ).
 
<math class="inline">\mathbf{X}\left(t\right)</math>  is a WSS process with its psd zero outside the interval <math class="inline">\left[-\omega_{max},\ \omega_{max}\right]</math> . If <math class="inline">R\left(\tau\right)</math>  is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the following: <math class="inline">R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right).</math> (Hint: <math class="inline">\left|\sin\theta\right|\leq\left|\theta\right|</math> ).
 
----
 
----

Latest revision as of 10:34, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2000



Part 2

$ \mathbf{X}\left(t\right) $ is a WSS process with its psd zero outside the interval $ \left[-\omega_{max},\ \omega_{max}\right] $ . If $ R\left(\tau\right) $ is the autocorrelation function of $ \mathbf{X}\left(t\right) $ , prove the following: $ R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right). $ (Hint: $ \left|\sin\theta\right|\leq\left|\theta\right| $ ).


Share and discuss your solutions below.


Solution 1 (retrived from here)

ref. pds means the power spectral density (More information on the Power Spectrum).

If $ \mathbf{X}\left(t\right) $ is real, then $ R_{\mathbf{X}}\left(\tau\right) $ is real and even function.

$ S_{\mathbf{X}}\left(\omega\right)=\int_{-\infty}^{\infty}R_{\mathbf{X}}\left(\tau\right)e^{-i\omega\tau}d\tau=\int_{-\infty}^{\infty}\left(R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)-R_{\mathbf{X}}\left(\tau\right)i\sin\left(\omega\tau\right)\right)d\tau $$ =2\int_{0}^{\infty}R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)d\tau\Longrightarrow\;\therefore S_{\mathbf{X}}\left(\omega\right)\text{ is real and even function.} $

$ R_{\mathbf{X}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\cos\left(\omega\tau\right)d\omega. $

$ R_{\mathbf{X}}\left(0\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega0}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)d\omega. $

$ R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(1-\cos\left(\omega\tau\right)\right)d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(2\sin^{2}\left(\frac{\omega\tau}{2}\right)\right)d\omega $$ \leq\frac{2}{\pi}\left|\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\sin^{2}\left(\frac{\omega\tau}{2}\right)d\omega\right|\leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left|\sin\left(\frac{\omega\tau}{2}\right)\right|^{2}d\omega $$ \leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left(\frac{\omega^{2}\tau^{2}}{4}\right)d\omega\leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|d\omega $$ \leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\pi R_{\mathbf{X}}\left(0\right)=\frac{\omega_{max}^{2}\tau^{2}}{2}R_{\mathbf{X}}\left(0\right). $

$ \therefore R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R_{\mathbf{X}}\left(0\right). $

$ \because\cos\left(\omega\tau\right)=\cos^{2}\left(\frac{\omega\tau}{2}\right)-\sin^{2}\left(\frac{\omega\tau}{2}\right)=1-2\sin^{2}\left(\frac{\omega\tau}{2}\right). $



Solution 2

Write it here.


Back to QE CS question 1, August 2000

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett