Line 34: Line 34:
 
'''(b)''' Determine the pdf of <math class="inline">\mathbf{Z}</math> . You can leave your answer in integral form.
 
'''(b)''' Determine the pdf of <math class="inline">\mathbf{Z}</math> . You can leave your answer in integral form.
 
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.4|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.4|answers and discussions]]'''
----
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
 
 
''(a)'''
 
 
<math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{-\infty}^{\infty}\frac{A}{2}e^{-A\left|x\right|}\cdot e^{i\omega x}dx=\frac{A}{2}\left[\int_{-\infty}^{0}e^{x\left(A+i\omega\right)}dx+\int_{0}^{\infty}e^{x\left(-A+i\omega\right)}dx\right]</math><math class="inline">=\frac{A}{2}\left[\frac{e^{x\left(A+i\omega\right)}}{A+i\omega}\biggl|_{-\infty}^{0}+\frac{e^{x\left(-A+i\omega\right)}}{-A+i\omega}\biggl|_{0}^{\infty}\right]=\frac{A}{2}\left[\frac{1}{A+i\omega}-\frac{1}{-A+i\omega}\right]</math><math class="inline">=\frac{A}{2}\cdot\frac{A-i\omega+A+i\omega}{A^{2}+\omega^{2}}=\frac{A^{2}}{A^{2}+\omega^{2}}.</math>
 
 
'''(b)'''
 
 
<math class="inline">P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|\leq2\sigma\right\} \right)=1-P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|>2\sigma\right\} \right).</math>  By [[ECE 600 Chebyshev Inequality|Chebyshev Inequality]], <math class="inline">P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|>2\sigma\right\} \right)\leq\frac{\sigma^{2}}{\left(2\sigma\right)^{2}}=\frac{1}{4}</math> .
 
 
<math class="inline">P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|\leq2\sigma\right\} \right)\geq\frac{3}{4}.</math>
 
 
'''2.'''
 
 
ref. pds means the power spectral density [[ECE 600 General Concepts of Stochastic Processes The Power Spectrum|(More information on the Power Spectrum)]].
 
 
If <math class="inline">\mathbf{X}\left(t\right)</math>  is real, then <math class="inline">R_{\mathbf{X}}\left(\tau\right)</math>  is real and even function.
 
 
<math class="inline">S_{\mathbf{X}}\left(\omega\right)=\int_{-\infty}^{\infty}R_{\mathbf{X}}\left(\tau\right)e^{-i\omega\tau}d\tau=\int_{-\infty}^{\infty}\left(R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)-R_{\mathbf{X}}\left(\tau\right)i\sin\left(\omega\tau\right)\right)d\tau</math><math class="inline">=2\int_{0}^{\infty}R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)d\tau\Longrightarrow\;\therefore S_{\mathbf{X}}\left(\omega\right)\text{ is real and even function.}</math>
 
 
<math class="inline">R_{\mathbf{X}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\cos\left(\omega\tau\right)d\omega.</math>
 
 
<math class="inline">R_{\mathbf{X}}\left(0\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega0}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)d\omega.</math>
 
 
<math class="inline">R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(1-\cos\left(\omega\tau\right)\right)d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(2\sin^{2}\left(\frac{\omega\tau}{2}\right)\right)d\omega</math><math class="inline">\leq\frac{2}{\pi}\left|\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\sin^{2}\left(\frac{\omega\tau}{2}\right)d\omega\right|\leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left|\sin\left(\frac{\omega\tau}{2}\right)\right|^{2}d\omega</math><math class="inline">\leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left(\frac{\omega^{2}\tau^{2}}{4}\right)d\omega\leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|d\omega</math><math class="inline">\leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\pi R_{\mathbf{X}}\left(0\right)=\frac{\omega_{max}^{2}\tau^{2}}{2}R_{\mathbf{X}}\left(0\right).</math>
 
 
<math class="inline">\therefore R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R_{\mathbf{X}}\left(0\right).</math>
 
 
<math class="inline">\because\cos\left(\omega\tau\right)=\cos^{2}\left(\frac{\omega\tau}{2}\right)-\sin^{2}\left(\frac{\omega\tau}{2}\right)=1-2\sin^{2}\left(\frac{\omega\tau}{2}\right).</math>
 
 
'''3.'''
 
 
 
<math class="inline">\lambda=\frac{15}{60\text{ sec}}=\frac{1}{4}\text{ sec}^{-1}.</math>
 
 
<math class="inline">P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left(\left(\lambda\left(t_{2}-t_{1}\right)\right)^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}\right)}{k!}.</math>
 
 
<math class="inline">P\left(\left\{ N\left(0,10\right)=3\right\} \cap\left\{ N\left(45,60\right)=2\right\} \right)=P\left(\left\{ N\left(0,10\right)=3\right\} \right)P\left(\left\{ N\left(45,60\right)=2\right\} \right)</math><math class="inline">=\frac{\left(\frac{1}{4}\times10\right)^{3}e^{-\frac{1}{4}\times10}}{3!}\times\frac{\left(\frac{1}{4}\times15\right)^{2}e^{-\frac{1}{4}\times15}}{2!}</math><math class="inline">=\frac{1}{12}\cdot\left(\frac{5}{2}\right)^{3}\left(\frac{15}{4}\right)^{2}e^{-\frac{25}{4}}.</math>
 
 
'''4.'''
 
 
 
 
'''(a)'''
 
 
<math class="inline">\Phi_{\mathbf{Z}}\left(\omega\right)=E\left[e^{i\omega\mathbf{Z}}\right]=E\left[e^{i\omega\sum_{n=0}^{8}\mathbf{X}_{n}}\right]=E\left[\prod_{n=0}^{8}e^{i\omega\mathbf{X}_{n}}\right]=\prod_{n=0}^{8}E\left[e^{i\omega\mathbf{X}_{n}}\right]=\left(\frac{1}{1-j\omega/2}\right)^{9}.</math>
 
 
'''(b)'''
 
 
<math class="inline">f_{\mathbf{Z}}\left(z\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\Phi_{\mathbf{Z}}\left(\omega\right)e^{-i\omega z}d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left(\frac{1}{1-j\omega/2}\right)^{9}e^{-i\omega z}d\omega.</math>
 
 
----
 
==Solution 2==
 
Write it here.
 
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 08:57, 27 June 2012


ECE Ph.D. Qualifying Exam: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, August 2000


Question

Part 1.

a) The Laplacian density function is given by $ f\left(x\right)=\frac{A}{2}e^{-A\left|x\right|}\text{ where }A>0. $ Determine its characteristic function.

b) Determine a bound on the probability that a RV is within two standard deviations of its mean.

Click here to view student answers and discussions

Part 2.

$ \mathbf{X}\left(t\right) $ is a WSS process with its psd zero outside the interval $ \left[-\omega_{max},\ \omega_{max}\right] $ . If $ R\left(\tau\right) $ is the autocorrelation function of $ \mathbf{X}\left(t\right) $ , prove the following: $ R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right). $ (Hint: $ \left|\sin\theta\right|\leq\left|\theta\right| $ ).

Click here to view student answers and discussions

Part 3.

Inquiries arrive at a recorded message device according to a Poisson process of rate 15 inquiries per minute. Find the probability that in a 1-minute period, 3 inquiries arrive during the first 10 seconds and 2 inquiries arrive during the last 15 seconds.

Click here to view student answers and discussions

Part 4.

A RV is given by $ \mathbf{Z}=\sum_{n=0}^{8}\mathbf{X}_{n} $ where $ \mathbf{X}_{n} $ 's are i.i.d. RVs with characteristic function given by $ \Phi_{\mathbf{X}}\left(\omega\right)=\frac{1}{1-j\omega/2}. $

(a) Determine the characteristic function of $ \mathbf{Z} $ .

(b) Determine the pdf of $ \mathbf{Z} $ . You can leave your answer in integral form.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood