(New page: Category:ECE438 (BoutinFall2009) =ECE 438 Fall_2009 Prof. Boutin: graph of the magnitude of the DFT of a windowed filter= This is an approximation of the graph of the magniture of <m...)
 
Line 3: Line 3:
 
=ECE 438 Fall_2009 Prof. Boutin: graph of the magnitude of the DFT of a windowed filter=
 
=ECE 438 Fall_2009 Prof. Boutin: graph of the magnitude of the DFT of a windowed filter=
  
This is an approximation of the graph of the magniture of <math>H_{FIR}(\omega)=W(\omega)*\bar{H}(\omega)</math> for <math>M=1,000</math> and <math>\omega_c=\frac{\pi}{2}</math>.
+
Consider the ideal low-pass filter
 +
 
 +
<math>H(\omega)=\left\{ \begin{array}{ll}1, & \text{ when } |\omega|< \omega_c\\
 +
0, & \text{ when } \omega_c< |\omega|< \pi \end{array}\right.,</math>
 +
 
 +
which corresponds to the DT signal
 +
 
 +
<math>h[n]=\left\{
 +
\begin{array}{ll}
 +
\frac{\omega_c}{\pi}, & \text{ if }n=0,\\
 +
\frac{\sin (\omega_c n)}{\pi n}, & else.
 +
\end{array}
 +
\right.</math>
 +
First we shift <math>h[n]</math> by <math>\frac{M-1}{2}</math> units.
 +
 
 +
<math>\bar{h}[n]=h[n-\frac{M-1}{2]}</math>
 +
 
 +
 
 +
Belowis an approximation of the graph of the magniture of <math>H_{FIR}(\omega)=W(\omega)*\bar{H}(\omega)</math> for <math>M=1,000</math> and <math>\omega_c=\frac{\pi}{2}</math>.
  
 
[[Image:hFIR.png|500px]]
 
[[Image:hFIR.png|500px]]

Revision as of 10:21, 14 October 2009


ECE 438 Fall_2009 Prof. Boutin: graph of the magnitude of the DFT of a windowed filter

Consider the ideal low-pass filter

$ H(\omega)=\left\{ \begin{array}{ll}1, & \text{ when } |\omega|< \omega_c\\ 0, & \text{ when } \omega_c< |\omega|< \pi \end{array}\right., $

which corresponds to the DT signal

$ h[n]=\left\{ \begin{array}{ll} \frac{\omega_c}{\pi}, & \text{ if }n=0,\\ \frac{\sin (\omega_c n)}{\pi n}, & else. \end{array} \right. $ First we shift $ h[n] $ by $ \frac{M-1}{2} $ units.

$ \bar{h}[n]=h[n-\frac{M-1}{2]} $


Belowis an approximation of the graph of the magniture of $ H_{FIR}(\omega)=W(\omega)*\bar{H}(\omega) $ for $ M=1,000 $ and $ \omega_c=\frac{\pi}{2} $.

HFIR.png

This is the graph of the magniture of $ W(\omega) $ for $ N=100 $.

DFT hFIR.png

This is the graph of the magniture of $ W(\omega) $ for $ N=10000 $.

DFT hFIRzoom.png


Back to ECE438 (BoutinFall2009)

Alumni Liaison

EISL lab graduate

Mu Qiao