Line 4: Line 4:
 
[[Category: 2007]]
 
[[Category: 2007]]
 
[[Category: mboutin]]
 
[[Category: mboutin]]
[[Category: Defintions]]
 
[[Category: Geometric Series]]
 
  
 
The Geometric Series formulas below still hold for <math> \alpha\ </math>'s containing complex exponentials.
 
The Geometric Series formulas below still hold for <math> \alpha\ </math>'s containing complex exponentials.
Line 26: Line 24:
  
 
In this case, <math> \alpha=\frac{1}{2}e^{-j\omega} </math> in the above Geometric Series formula.
 
In this case, <math> \alpha=\frac{1}{2}e^{-j\omega} </math> in the above Geometric Series formula.
 +
 +
----
 +
[[ECE301|Back to ECE301]]
 +
 +
[[ECE438|Back to ECE438]]
 +
 +
[[More_on_geometric_series|More on geometric series]]
 +
 +
[[Category:geometric series]]

Revision as of 09:26, 7 September 2011


The Geometric Series formulas below still hold for $ \alpha\ $'s containing complex exponentials.

For k from 0 to n, where $ \alpha \ne 1 $:

$ \sum_{k=0}^{n} \alpha^k = \frac{1-\alpha^{n+1}}{1-\alpha} $
(else, = n + 1)

For k from 0 to $ \infty\ $, where $ \alpha < 1\ $:

$ \sum_{k=0}^\infty \alpha^k = \frac{1}{1-\alpha} $
(else it diverges)

Example: We want to evaluate the following:

$ \sum_{k=0}^\infty (\frac{1}{2})^k e^{-j \omega k}= \sum_{k=0}^\infty (\frac{1}{2}e^{-j\omega})^k = \frac{1}{1-\frac{1}{2}e^{-j\omega}} $

In this case, $ \alpha=\frac{1}{2}e^{-j\omega} $ in the above Geometric Series formula.


Back to ECE301

Back to ECE438

More on geometric series

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett