Line 7: Line 7:
 
[[Category: Frequency Response]]
 
[[Category: Frequency Response]]
 
[[Category: Impulse Response]]
 
[[Category: Impulse Response]]
 
+
=Frequency and Impulse Response of a causal LTI system defined by a difference equation =
 
For the discrete time L.T.I. system described by
 
For the discrete time L.T.I. system described by
  
Line 41: Line 41:
 
:for n > 0
 
:for n > 0
 
:: <math> h[n] = {\left(\frac{1}{2} \right)}^{n-1} </math>
 
:: <math> h[n] = {\left(\frac{1}{2} \right)}^{n-1} </math>
 +
----
 +
[[ECE301|Back to ECE301]]

Latest revision as of 07:31, 9 March 2011

Frequency and Impulse Response of a causal LTI system defined by a difference equation

For the discrete time L.T.I. system described by

$ y[n]-\frac{1}{2}y[n-1]=x[n]+\frac{1}{2}x[n-1] $

Find the frequency response H($ \omega\ $) and the impulse response h[n] of the system.

Frequency Response:

1: Take the Fourier transform of the equation,

$ Y(\omega)-\frac{1}{2}e^{-j\omega}Y(\omega)=X(\omega)+\frac{1}{2}e^{-j\omega}X(\omega) $

2: Solve for Y($ \omega\ $)/X($ \omega\ $), which is the frequency response H($ \omega\ $),

$ H(\omega)=\frac{Y(\omega)}{X(\omega)}=\frac{1+\frac{1}{2}e^{-j\omega}}{1-\frac{1}{2}e^{-j\omega}} $

Impulse Response:

1: Expand into two terms using partial fraction expansion (Guide to Partial Fraction Expansion) to facilitate use of inverse Fourier transform,

$ H(\omega)=\frac{1}{1-\frac{1}{2}e^{-j\omega}}+\frac{1}{2}\frac{e^{-j\omega}}{1-\frac{1}{2}e^{-j\omega}} $

2: Take the inverse Fourier transform of H($ \omega\ $) (Fourier Transform Table),

$ h[n]={\left(\frac{1}{2} \right)}^{n}u[n]+\frac{1}{2}{\left(\frac{1}{2} \right)}^{n-1}u[n-1] $

3: Simplify if so inclined,

for n = 0
$ h[n] = 1\ $
for n > 0
$ h[n] = {\left(\frac{1}{2} \right)}^{n-1} $

Back to ECE301

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman