(New page: Category: ECE Category: ECE 301 Category: Fall Category: 2007 Category: mboutin Category: Examples Category: Frequency Response Category: Impulse Response ...) |
|||

Line 7: | Line 7: | ||

[[Category: Frequency Response]] | [[Category: Frequency Response]] | ||

[[Category: Impulse Response]] | [[Category: Impulse Response]] | ||

− | + | =Frequency and Impulse Response of a causal LTI system defined by a difference equation = | |

For the discrete time L.T.I. system described by | For the discrete time L.T.I. system described by | ||

Line 41: | Line 41: | ||

:for n > 0 | :for n > 0 | ||

:: <math> h[n] = {\left(\frac{1}{2} \right)}^{n-1} </math> | :: <math> h[n] = {\left(\frac{1}{2} \right)}^{n-1} </math> | ||

+ | ---- | ||

+ | [[ECE301|Back to ECE301]] |

## Latest revision as of 08:31, 9 March 2011

# Frequency and Impulse Response of a causal LTI system defined by a difference equation

For the discrete time L.T.I. system described by

- $ y[n]-\frac{1}{2}y[n-1]=x[n]+\frac{1}{2}x[n-1] $

Find the frequency response H($ \omega\ $) and the impulse response h[n] of the system.

Frequency Response:

1: Take the Fourier transform of the equation,

- $ Y(\omega)-\frac{1}{2}e^{-j\omega}Y(\omega)=X(\omega)+\frac{1}{2}e^{-j\omega}X(\omega) $

2: Solve for Y($ \omega\ $)/X($ \omega\ $), which is the frequency response H($ \omega\ $),

- $ H(\omega)=\frac{Y(\omega)}{X(\omega)}=\frac{1+\frac{1}{2}e^{-j\omega}}{1-\frac{1}{2}e^{-j\omega}} $

Impulse Response:

1: Expand into two terms using partial fraction expansion (Guide to Partial Fraction Expansion) to facilitate use of inverse Fourier transform,

- $ H(\omega)=\frac{1}{1-\frac{1}{2}e^{-j\omega}}+\frac{1}{2}\frac{e^{-j\omega}}{1-\frac{1}{2}e^{-j\omega}} $

2: Take the inverse Fourier transform of H($ \omega\ $) (Fourier Transform Table),

- $ h[n]={\left(\frac{1}{2} \right)}^{n}u[n]+\frac{1}{2}{\left(\frac{1}{2} \right)}^{n-1}u[n-1] $

3: Simplify if so inclined,

- for n = 0
- $ h[n] = 1\ $

- for n > 0
- $ h[n] = {\left(\frac{1}{2} \right)}^{n-1} $