(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
 
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
  
 +
 +
[[Category:ECE600]]
 +
[[Category:probability]]
 +
[[Category:lecture notes]]
 +
[[Category:slecture]]
  
 
<center><font size= 4>
 
<center><font size= 4>
'''Random Variables and Signals'''
+
[[ECE600_F13_notes_mhossain|'''The Comer Lectures on Random Variables and Signals''']]
 
</font size>
 
</font size>
 +
 +
[https://www.projectrhea.org/learning/slectures.php Slectures] by [[user:Mhossain | Maliha Hossain]]
 +
  
 
<font size= 3> Topic 16: Conditional Expectation for Two Random Variables</font size>
 
<font size= 3> Topic 16: Conditional Expectation for Two Random Variables</font size>
 
</center>
 
</center>
 
  
 
----
 
----
 
+
----
 
If X and Y are random variables on (''S,F'',P) and  ∈ ''F'' with P(M) > 0, then, <br/>
 
If X and Y are random variables on (''S,F'',P) and  ∈ ''F'' with P(M) > 0, then, <br/>
 
<center><math>E[g(X,Y)|M] = \int\int_{\mathbb R^2} g(x,y)f_{XY}(x,y|M)dxdy</math></center>
 
<center><math>E[g(X,Y)|M] = \int\int_{\mathbb R^2} g(x,y)f_{XY}(x,y|M)dxdy</math></center>
Line 66: Line 73:
 
E[g(X,Y)]&=\int_{\mathbb R}E[g(X,Y)|X=x]f_X(x)dx \\
 
E[g(X,Y)]&=\int_{\mathbb R}E[g(X,Y)|X=x]f_X(x)dx \\
 
&= \int_{\mathbb R}h(x)f_X(x)dx \\
 
&= \int_{\mathbb R}h(x)f_X(x)dx \\
&=h(X)
+
&=E[h(X)]
 
\end{align}</math></center>
 
\end{align}</math></center>
  
Line 89: Line 96:
 
\end{align}</math></center>
 
\end{align}</math></center>
  
We do not know f<math>_{XY}</math> or f_<math>_X</math>, but we know f<math>_{X|Y}</math> or f_<math>_Y</math><br/>
+
We do not know f<math>_{XY}</math> or f<math>_X</math>, but we know f<math>_{X|Y}</math> or f<math>_Y</math><br/>
 
<center><math>\begin{align}
 
<center><math>\begin{align}
 
f_Y(y)&=\frac{1}{l}\qquad\ &0\leq y\leq l \\
 
f_Y(y)&=\frac{1}{l}\qquad\ &0\leq y\leq l \\
Line 96: Line 103:
  
 
Use E[X]=E[E[X|Y]]. Now <br/>
 
Use E[X]=E[E[X|Y]]. Now <br/>
<center><math>h(h)\equiv E[X|Y=y] = \frac{y}{2}</math></center>
+
<center><math>h(y)\equiv E[X|Y=y] = \frac{y}{2}</math></center>
 
since X is uniform on [0,y] given Y=y. So, <br/>
 
since X is uniform on [0,y] given Y=y. So, <br/>
 
<center><math>h(Y)=\frac{Y}{2}</math></center>
 
<center><math>h(Y)=\frac{Y}{2}</math></center>

Latest revision as of 12:13, 21 May 2014

Back to all ECE 600 notes

The Comer Lectures on Random Variables and Signals

Slectures by Maliha Hossain


Topic 16: Conditional Expectation for Two Random Variables



If X and Y are random variables on (S,F,P) and ∈ F with P(M) > 0, then,

$ E[g(X,Y)|M] = \int\int_{\mathbb R^2} g(x,y)f_{XY}(x,y|M)dxdy $

One important case is when M = {Y = y} for some y ∈ R. Then we have that

$ E[g(X,Y)|Y=y]=\int\int_{\mathbb R^2}g(x,y')f_{XY}(x,y'|Y=y)dxdy' $

Using our old trick, let

$ E[g(X,Y)|Y=y]=\lim_{\Delta y\rightarrow 0}\int\int_{\mathbb R^2}g(x,y')f_{XY}(x,y'|y<Y\leq y+\Delta y)dxdy' $

Using this approach, it can be shown that

$ \begin{align} E[g(X,Y)|Y=y]&=E[g(X,y)|Y=y] \\ &=\int_{-\infty}^{\infty}g(x,y)f_{X|Y}(x|y)dx \\ \end{align} $


Another important case: g(X,Y)=g(X)

$ \begin{align} E[g(X)|M]&=\int\int g(x)f_{XY}(x,y|M)dxdy \\ &=\int g(x)\left[\int f_{XY}(x,y|M)dy\right]dx \\ &=\int g(x)f_X(x|M)dx \end{align} $

Note that this is the same equation we had, for example

$ E[g(X)|Y=y]=\int g(x)f_{X|Y}(x|y)dx $



Iterated Expectation

Sometimes we want to work with f$ _{Y|X} $(y|x) and f$ _X $(x) instead of f$ _{XY} $(x,y). This can make computation of E[g(X,Y)] easier in some cases. We can write

$ \begin{align} E[g(X,Y)]&=\int\int_{\mathbb R^2}g(x,y)f_{XY}(x,y)dxdy \\ &=\int\int_{\mathbb R^2}f_X(x)g(x,y)f_{Y|X}(y|x)dydx \\ &=\int_{\mathbb R}f_X(x)E[g(X,Y)|X=x]dx \end{align} $

Note that E[g(X,Y)|X=x] is a function of x ∈ R. We will call this function h.

$ h(x)=E[g(X,Y)|X=x]\qquad h:\mathbb R\rightarrow\mathbb R $

We can create a random variable h(X). We will use the notation

$ E[g(X,Y)|X]\equiv h(X) $

So we have

$ h(x) = E[g(X,Y)|X=x] \ $

which is a real-valued function of x ∈ R, and h(X), which is a random variable since it is a function of random variable X.

Now we can write

$ \begin{align} E[g(X,Y)]&=\int_{\mathbb R}E[g(X,Y)|X=x]f_X(x)dx \\ &= \int_{\mathbb R}h(x)f_X(x)dx \\ &=E[h(X)] \end{align} $

So,

$ E[g(X,Y)] = E[E[g(X,Y)|X]] \ $

We call this iterated expectation.

An important special case is when g(X,Y)=Y, in which case, we have

$ E[Y]=E[E[Y|X]] \ $


Example $ \qquad $ Suppose we have a stick of length l. We break the stick at a uniformly chosen point Y, then again at a uniformly chosen point X. Find E[X].


Fig 1: example problem


$ \begin{align} E[X]&=\int\int_{\mathbb R^2}xf_{XY}(x,y)dxdy \\ &=\int_{\mathbb R}xf_X(x)dx \end{align} $

We do not know f$ _{XY} $ or f$ _X $, but we know f$ _{X|Y} $ or f$ _Y $

$ \begin{align} f_Y(y)&=\frac{1}{l}\qquad\ &0\leq y\leq l \\ f_{X|Y}(x|y)&=\frac{1}{y}\qquad &0\leq x\leq y \end{align} $

Use E[X]=E[E[X|Y]]. Now

$ h(y)\equiv E[X|Y=y] = \frac{y}{2} $

since X is uniform on [0,y] given Y=y. So,

$ h(Y)=\frac{Y}{2} $

Then

$ E[X]=E\left[\frac{Y}{2}\right]=\frac{1}{2}E[Y]=\frac{1}{2}.\frac{l}{2}=\frac{l}{4} $



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett