(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
[[Category:2010 Fall ECE 438 Boutin]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 +
[[Category:Problem_solving]]
 +
[[Category:ECE438]]
 +
[[Category:digital signal processing]]
  
 
== Quiz Questions Pool for Week 13 ==
 
== Quiz Questions Pool for Week 13 ==
 
*Under construction --[[User:zhao148|Zhao]]
 
 
----
 
----
Q1. Show that the DTFT of time-reversal, <math>x[-n]</math>, is <math>X(-w)</math>  
+
Q1. Show that the DTFT of time-reversal, <math>x[-n]\,\!</math>, is <math>X(-\omega)\,\!</math>  
  
 
* [[ECE438_Week13_Quiz_Q1sol|Solution]].
 
* [[ECE438_Week13_Quiz_Q1sol|Solution]].
Line 11: Line 12:
 
Q2. Consider the discrete-time signal
 
Q2. Consider the discrete-time signal
  
<math>x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
+
:<math>x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
  
 
a) Determine the DTFT <math>X(\omega)</math> of x[n] and the DTFT of <math>Y(\omega)</math> of y[n]=x[-n].
 
a) Determine the DTFT <math>X(\omega)</math> of x[n] and the DTFT of <math>Y(\omega)</math> of y[n]=x[-n].
Line 17: Line 18:
 
b) Using your result from part a), compute  
 
b) Using your result from part a), compute  
  
<math>x[n]* y[n]</math>.
+
:<math>x[n]* y[n]</math>.
  
 
c) Consider the discrete-time signal  
 
c) Consider the discrete-time signal  
  
<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. </math>.   
+
:<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. </math>.   
  
 
Obtain the 4-point circular convolution of x[n] and z[n].
 
Obtain the 4-point circular convolution of x[n] and z[n].
Line 27: Line 28:
 
d) When computing the N-point circular convolution of x[n] and the signal
 
d) When computing the N-point circular convolution of x[n] and the signal
  
<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. </math>.   
+
:<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. </math>.   
  
 
how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?   
 
how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?   
Line 33: Line 34:
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
 
----
 
----
Q3.  
+
Q3. Consider the discrete-time signal
 +
 
 +
:<math>x[n]=\delta[n]</math>
 +
 
 +
a) Obtain the N-point DFT X[k] of x[n].
 +
 
 +
b) Obtain the signal y[n] whose DFT is <math> (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k]</math>.
 +
 
 +
c) Now fix <math>N=5</math>. Compute 5-point circular convolution between <math>y[n]</math> and the signal
 +
 
 +
:<math>h[n]=\delta[n]+2\delta[n-1]+3\delta[n-2].</math>
  
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].
 
----
 
----
Q4.  
+
Q4. Consider a 3X3 FIR filter with coefficients h[m,n] <br/>
  
* [[ECE438_Week13_Quiz_Q4sol|Solution]].
+
{| class="wikitable" style="text-align:center" border="1" cellpadding="2" cellspacing="2" width="20%"
----
+
|+ m
Q5.  
+
! n !! -1!! 0 !! 1
 +
|-
 +
! 1
 +
| -0.5 || 0 || 0.5
 +
|-
 +
! 0
 +
| 0 || 1 || 0
 +
|-
 +
! -1
 +
|0.5 ||0 || -0.5
 +
|}
  
* [[ECE438_Week13_Quiz_Q5sol|Solution]].
+
a. Find a difference equation that can be used to implement this filter.<br/>
 +
b. Find the output image that results when this filter is applied to the input image shown below:<br/>
  
 +
{| cellspacing="1" cellpadding="1" border="0" width="20%"
 +
|-
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
|-
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 1
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
|-
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
|-
 +
| 0
 +
| 0
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
| 0
 +
| 0
 +
|-
 +
| 0
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
| 0
 +
|-
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
|-
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
|-
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
|-
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
|-
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
|-
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
| 0
 +
|}
 +
 +
c. Find a simple expression for the frequency response H(<math>\mu ,\nu</math>) of this filter.<br/>
 +
 +
* [[ECE438_Week13_Quiz_Q4sol|Solution]].
 
----
 
----
  

Latest revision as of 10:43, 11 November 2011


Quiz Questions Pool for Week 13


Q1. Show that the DTFT of time-reversal, $ x[-n]\,\! $, is $ X(-\omega)\,\! $


Q2. Consider the discrete-time signal

$ x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2]. $

a) Determine the DTFT $ X(\omega) $ of x[n] and the DTFT of $ Y(\omega) $ of y[n]=x[-n].

b) Using your result from part a), compute

$ x[n]* y[n] $.

c) Consider the discrete-time signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. $.

Obtain the 4-point circular convolution of x[n] and z[n].

d) When computing the N-point circular convolution of x[n] and the signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. $.

how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?

  • Same as HW8 Q3 available here.

Q3. Consider the discrete-time signal

$ x[n]=\delta[n] $

a) Obtain the N-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k] $.

c) Now fix $ N=5 $. Compute 5-point circular convolution between $ y[n] $ and the signal

$ h[n]=\delta[n]+2\delta[n-1]+3\delta[n-2]. $

Q4. Consider a 3X3 FIR filter with coefficients h[m,n]

m
n -1 0 1
1 -0.5 0 0.5
0 0 1 0
-1 0.5 0 -0.5

a. Find a difference equation that can be used to implement this filter.
b. Find the output image that results when this filter is applied to the input image shown below:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0

c. Find a simple expression for the frequency response H($ \mu ,\nu $) of this filter.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics