Revision as of 07:25, 11 November 2010 by Han83 (Talk | contribs)


Quiz Questions Pool for Week 12


Q1. Consider a causal FIR filter of length M = 2 with impulse response

$ h[n]=\delta[n-1]+\delta[n-2]\,\! $

a) Provide a closed-form expression for the 9-pt DFT of $ h[n] $, denoted $ H_9[k] $, as a function of $ k $. Simplify as much as possible.

b) Consider the sequence $ x[n] $ of length 9 below,

$ x[n]=\text{cos}\left(\frac{2\pi}{3}n\right)(u[n]-u[n-9])\,\! $

$ y_9[n] $ is formed by computing $ X_9[k] $ as an 9-pt DFT of $ x[n] $, $ H_9[k] $ as an 9-pt DFT of $ h[n] $, and then $ y_9[n] $ as the 9-pt inverse DFT of $ Y_9[k] = X_9[k]H_9[k] $.

Express the result $ y_9[n] $ as a weighted sum of finite-length sinewaves similar to how $ x[n] $ is written above.


Q2. Consider the discrete-time signal

$ x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]. $

a) Obtain the 6-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ W_6^{-2k} X[k] $.

c) Compute six-point circular convolution between x[n] and the signal

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $
  • Same as HW8, Q2 available here.

Q3. Consider the signal

$ x[n] = \begin{cases} cos(\pi n / 8), & n < 0 \\ cos(\pi n / 3), & \mbox{else} \end{cases} $

and assume a rectangular window

$ w[n] = \begin{cases} 1, & |n| < 25 \\ 0, & \mbox{else} \end{cases} $

The STDFT is defined as

$ \begin{align} X(\omega,n) &= \sum_{k} x[k]w[n-k]e^{-j\omega k} \end{align} $

Compute the STDTFT for the following cases:
i. n < -25
ii. n > 25
iii. n = 0


Q4. Consider the STDTFT defined as

$ X(\omega ,n)=\sum_k x[k]w[n-k]e^{-j\omega k} $

where x[n] is the speech signal and w[n] is the window sequence. Prove the following properties:

a. Linearity – if $ v[n]=ax[n]+by[n] $ ,then $ V(\omega ,n)=aX(\omega ,n)+bY(\omega, n) $.

b. Modulation – if $ v[n]=x[n]e^{j\omega_0n} $ ,then $ V(\omega ,n)=X(\omega -\omega_0,n) $.


Q5. Suppose we have two 4-pt sequences x[n] and h[n] described as follows:

$ \begin{align} x[n] &= cos(\frac{\pi n}{2})\text{ ,n=0,1,2,3} \\ h[n] &= 2^n\text{ ,n=0,1,2,3} \end{align} $

a. Compute 4-pt DFT X[k];

b. Compute 4-pt DFT H[k];

c. Compute 4-pt circular convolution directly of $ y[n]=x[n]\circledast_4 h[n] $;(You may use plot to explain your answer)

d. Multiply DFT result of x[n] and h[n]. Then using IDFT to compute y[n] in question c.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang