Solution to Q1 of Week 12 Quiz Pool


a) DFT is a frequency sampling of DTFT and both are related such that $ H_9[k]=H(w)|_{w=\frac{2\pi}{9}k} $.

Thus, we need to find the DTFT of $ h[n] $.

$ \begin{align}h[n]=\delta[n-1]+\delta[n-2] \;\; \Leftrightarrow \;\; H(w)&=e^{-jw}+e^{-j2w}=e^{-jw}(1+e^{-jw}) \\ &=e^{-jw}e^{-j\frac{w}{2}}\left(e^{j\frac{w}{2}}+e^{-j\frac{w}{2}}\right) \\ &=2\text{cos}\left(\frac{w}{2}\right)e^{-j\frac{3w}{2}} \end{align} $

Therefore, $ H_9[k]=2\text{cos}\left(\frac{\pi}{9}k\right)e^{-j\frac{\pi}{3}k} \;\;\; \text{for} \;\; k=0,1,...,7,8. $.


b) Note that $ y_9[n] $ is the 9-pt inverse DFT of $ Y_9[k]=X_9[k]H_9[k] $.

But we know that when the input $ x[n] $ is in the form of $ e^{jw_0 n} $, then the output is $ y[n]=H(w_0)e^{jw_0 n} $.

Thus, the 9-pt inverse DFT of $ Y_9[k] $, $ y_9[n] $, is related such that $ y_9[n]=H_9[k]e^{j\frac{2\pi}{9}kn}(u[n]-u[n-9]) $.

for any length-9 input with frequency corresponding to $ w=\frac{2\pi}{9}k $, i.e. $ e^{j\frac{2\pi}{9}kn}(u[n]-u[n-9]) $.

Note that,

$ \begin{align} x[n]&=\text{cos}\left(\frac{2\pi}{3}n\right)(u[n]-u[n-9]) \\ &=\left(\frac{1}{2}e^{j\frac{2\pi}{3}n}+\frac{1}{2}e^{-j\frac{2\pi}{3}n}\right)(u[n]-u[n-9]) \\ &=\left(\frac{1}{2}e^{j\frac{2\pi}{9}3n}+\frac{1}{2}e^{-j\frac{2\pi}{9}3n}\left(e^{j2\pi n}\right)\right)(u[n]-u[n-9]) \;\; (\text{since }e^{j2\pi n}=1) \\ &=\left(\frac{1}{2}e^{j\frac{2\pi}{9}3n}+\frac{1}{2}e^{j\frac{2\pi}{9}6n}\right)(u[n]-u[n-9]) \end{align} $

Hence, $ y_9[n]=\left(\frac{1}{2}H_9[3]e^{j\frac{2\pi}{9}3n} + \frac{1}{2}H_9[6]e^{j\frac{2\pi}{9}6n}\right)(u[n]-u[n-9]) $.

$ H_9[3]=2\text{cos}\left(\frac{3\pi}{9}\right)e^{-j\frac{3\pi}{3}}=2\frac{\sqrt{3}}{2}(-1)=-\sqrt{3} $

$ H_9[6]=2\text{cos}\left(\frac{6\pi}{9}\right)e^{-j\frac{6\pi}{3}}=2\frac{1}{2}(1)=1 $

Therefore, $ y_9[n]=\left(-\frac{\sqrt{3}}{2}e^{j\frac{2\pi}{9}3n} + \frac{1}{2}e^{j\frac{2\pi}{9}6n}\right)(u[n]-u[n-9]) $.


Credit: Prof. Mike Zoltowski

Back to Lab Week 12 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett