(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
[[Category:CNSIP]]
 
[[Category:CNSIP]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
[[Category:random variables]]
+
[[Category:automatic control]]
 +
[[Category:optimization]]
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Automatic Control (AC)Question 3, August 2011=
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Automatic Control (AC)
 +
 
 +
Question 3: Optimization
 +
</font size>
 +
 
 +
August 2011
 +
</center>
 +
----
 
----
 
----
 
==Question==
 
==Question==
Line 25: Line 39:
 
'''Part 2.'''
 
'''Part 2.'''
  
 +
 +
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}  \text{ Use the simplex method to solve the problem, }</math></span></font>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">maximize &nbsp; &nbsp; &nbsp; &nbsp;''x''<sub>1</sub> + ''x''<sub>2</sub></span>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>''' &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},-x_{2}\geq0.</math>
  
  
 
:'''Click [[ECE-QE_AC3-2011_solusion-2|here]] to view student [[ECE-QE_AC3-2011_solusion-2|answers and discussions]]'''
 
:'''Click [[ECE-QE_AC3-2011_solusion-2|here]] to view student [[ECE-QE_AC3-2011_solusion-2|answers and discussions]]'''
 
----
 
----
'''Part 3.'''
+
'''Part 3.''' (20 pts)
  
 +
 +
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{ Solve the following linear program, }</math></span></font>
 +
 +
<span class="texhtml">maximize &nbsp; &nbsp;−&nbsp;''x''<sub>1</sub> − 3''x''<sub>2</sub> + 4''x''<sub>3</sub></span><br>
 +
 +
<span class="texhtml"><sub></sub></span>subject to &nbsp; &nbsp;<span class="texhtml">''x''<sub>1</sub> + 2''x''<sub>2</sub> − ''x''<sub>3</sub> = 5</span>
 +
 +
<span class="texhtml">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;2''x''<sub>1</sub> + 3''x''<sub>2</sub> − ''x''<sub>3</sub> = 6</span>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0.</math>
  
  
 
:'''Click [[ECE-QE_AC3-2011_solusion-3|here]] to view student [[ECE-QE_AC3-2011_solusion-3|answers and discussions]]'''
 
:'''Click [[ECE-QE_AC3-2011_solusion-3|here]] to view student [[ECE-QE_AC3-2011_solusion-3|answers and discussions]]'''
 
----
 
----
'''Part 4.'''
+
'''Part 4.''' (20 pts)
 +
 
 +
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{ Consider the following model of a discrete-time system,  }</math></span></font>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x\left ( k+1 \right )=2x\left ( k \right )+u\left ( k \right ), x\left ( 0 \right )=0, 0\leq k\leq 2</math><br>
 +
 
 +
<math>\color{blue}\text{Use the Lagrange multiplier approach to calculate the optimal control sequence}</math><br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left \{ u\left ( 0 \right ),u\left ( 1 \right ), u\left ( 2 \right ) \right \}</math>
 +
 
 +
<math>\color{blue}\text{that transfers the initial state } x\left( 0 \right) \text{ to } x\left( 3 \right)=7 \text{ while minimizing the performance index}</math><br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>J=\frac{1}{2}\sum\limits_{k=0}^2 u\left ( k \right )^{2}</math><br>
  
  
Line 42: Line 84:
 
'''Part 5.''' (20 pts)
 
'''Part 5.''' (20 pts)
  
 +
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{ Consider the following optimization problem, }</math></span></font>
 +
 +
<font color="#ff0000">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</font><math>\text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{2}- x_{1}^{2}\geq0</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>2-x_{1}-x_{2}\geq0</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}\geq0.</math>
 +
 +
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 +
0 & 0
 +
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math>
 +
 +
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>
 +
 +
<math>\color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.}</math><br>
  
 
:'''Click [[ECE-QE_AC3-2011_solusion-5|here]] to view student [[ECE-QE_AC3-2011_solusion-5|answers and discussions]]'''
 
:'''Click [[ECE-QE_AC3-2011_solusion-5|here]] to view student [[ECE-QE_AC3-2011_solusion-5|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 10:17, 13 September 2013


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2011



Question

Part 1. 20 pts


 $ \color{blue} \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $

$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

Click here to view student answers and discussions

Part 2.


 $ \color{blue} \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},-x_{2}\geq0. $


Click here to view student answers and discussions

Part 3. (20 pts)


 $ \color{blue}\text{ Solve the following linear program, } $

maximize    − x1 − 3x2 + 4x3

subject to    x1 + 2x2x3 = 5

                   2x1 + 3x2x3 = 6

                   $ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $


Click here to view student answers and discussions

Part 4. (20 pts)

 $ \color{blue} \text{ Consider the following model of a discrete-time system, } $

                    $ x\left ( k+1 \right )=2x\left ( k \right )+u\left ( k \right ), x\left ( 0 \right )=0, 0\leq k\leq 2 $

$ \color{blue}\text{Use the Lagrange multiplier approach to calculate the optimal control sequence} $

                   $ \left \{ u\left ( 0 \right ),u\left ( 1 \right ), u\left ( 2 \right ) \right \} $

$ \color{blue}\text{that transfers the initial state } x\left( 0 \right) \text{ to } x\left( 3 \right)=7 \text{ while minimizing the performance index} $
                   $ J=\frac{1}{2}\sum\limits_{k=0}^2 u\left ( k \right )^{2} $


Click here to view student answers and discussions

Part 5. (20 pts)

 $ \color{blue} \text{ Consider the following optimization problem, } $

                            $ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                        $ \text{subject to } x_{2}- x_{1}^{2}\geq0 $

                                                 $ 2-x_{1}-x_{2}\geq0 $

                                                 $ x_{1}\geq0. $

$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $

$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $

$ \color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.} $

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett