Line 44: Line 44:
 
<math> \begin{align} \\
 
<math> \begin{align} \\
 
\mathcal{X}(\omega+2\pi) & = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega+2\pi)n}\\
 
\mathcal{X}(\omega+2\pi) & = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega+2\pi)n}\\
& =\sum_{n=-\infty}^{\infty}x[n]\\
+
& =\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\\
 
\end{align}
 
\end{align}
 
</math>
 
</math>

Revision as of 18:47, 29 September 2014


Discrete-time Fourier Transform (DTFT)

A slecture by ECE student Xian Zhang

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


outline

  • Definition
  • Periodicity property
  • Example of computation of DTFT of a complex exponential


Definition

The discrete-time Fourier transform (DTFT) of a discrete set of real or complex numbers x[n] with n=all integers, is a Fourier series, which produces a periodic function of a frequency variable. With w has units of radians/sample, the Fourier series is:

$ \begin{align} \\ \mathcal{X}_1(\omega) & = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} \\ \end{align} $

Inverse DTFT is :

$ \begin{align} \\ \quad x[n] & =\frac{1}{2\pi}\int_{-\pi}^{\pi}\mathcal{X}(\omega)e^{j\omega n}d\omega \\ \end{align} $



Periodicity property

$ \mathcal{X}(\omega) $ is periodic with period $ 2\pi $. Because,

$ \begin{align} \\ \mathcal{X}(\omega+2\pi) & = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega+2\pi)n}\\ & =\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\\ \end{align} $

Alumni Liaison

EISL lab graduate

Mu Qiao