(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:slecture]]
+
<br>
[[Category:ECE438Fall2014Boutin]]
+
<center><font size="4"></font>
[[Category:ECE]]
+
<font size="4">'''Discrete-time Fourier Transform with Example''' </font>
[[Category:ECE438]]
+
[[Category:signal processing]] 
+
  
<center><font size= 4>
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Jacob Holtman
'''Discrete-time Fourier transform'''
+
</font size>
+
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Jacob Holtman
+
Partly based on the [[2014 Fall ECE 438 Boutin|ECE438 Fall 2014 lecture]] material of [[User:Mboutin|Prof. Mireille Boutin]].  
 
+
</center>  
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
+
</center>
+
 
----
 
----
 +
 
----
 
----
==Definition of Discrete Time Fourier Transform (DTFT)==
 
<math>X(\omega)  := \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} </math>
 
  
==Definition of Inverse Discrete Time Fourier Transform (iDTFT)==
+
== Definition of Discrete Time Fourier Transform (DTFT)  ==
<math>x[n] = \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega </math>
+
 
 +
<math>X(\omega) = \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} </math>
 +
 
 +
 
 +
== Definition of Inverse Discrete Time Fourier Transform (iDTFT) ==
 +
 
 +
<math>x[n] = \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega </math>  
  
 
----
 
----
<math>X(\omega) </math> is seen to be periodic with a period of <math>2\pi</math> to see this <math>\omega</math> is replaced with <math>\omega + 2k\pi</math> where k is an integer
 
  
<math>X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j({\color{blue}\omega + 2k\pi})n} </math>
+
<span class="texhtml">''X''(ω)</span> is seen to be periodic with a period of <span class="texhtml">2π</span> to see this <span class="texhtml">ω</span> is replaced with <span class="texhtml">ω + 2''k''π</span> where k is an integer
  
Using the multiplicative rule of exponential the <math>\omega</math> and <math>2k\pi</math> are split into two different exponential 
+
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]e^{-j({\color{blue}\omega + 2k\pi})n} </math>  
  
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]{\color{red}e^{-j\omega n}}{\color{blue}e^{2k\pi n}} </math>
+
Using the multiplicative rule of exponential the <span class="texhtml">ω</span> and <span class="texhtml">2''k''π</span> are split into two different exponential
  
given that n and k are integers k and so <math>e^{-j2k\pi n} = 1  </math> for all k, from Euler's identity and so
+
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]{\color{red}e^{-j\omega n}}{\color{blue}e^{2k\pi n}} </math>  
  
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = X(\omega) </math>
+
given that n and k are integers k and so <span class="texhtml">''e''<sup> − ''j''2''k''π''n''</sup> = 1</span> for all k, from Euler's identity and so
 +
 
 +
<math>X(\omega + 2k\pi)  = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = X(\omega) </math>
 +
 
 +
so <span class="texhtml">''X''(ω + 2''k''π) = ''X''(ω)</span> for all <span class="texhtml">ω</span>  
  
so <math>X(\omega + 2k\pi) = X(\omega) </math> for all <math>\omega</math>
 
 
----
 
----
 +
 
to find the DTFT of a complex exponential  
 
to find the DTFT of a complex exponential  
  
<math>x[n] = e^{j\omega_0 n} </math>
+
<math>x[n] = e^{j\omega_0 n} </math>  
  
The first step is to replace x[n] with the exponential in the DTFT equation
+
The first step is to replace x[n] with the exponential in the DTFT equation  
  
<math>X(\omega)  = \sum_{n=-\infty}^{\infty}{\color{blue}e^{j\omega_0 n}}e^{-j\omega n} </math>
+
<math>X(\omega)  = \sum_{n=-\infty}^{\infty}{\color{blue}e^{j\omega_0 n}}e^{-j\omega n} </math>  
  
if <math>\omega</math> = <math>\omega_0</math> then the exponential is always 1 and the sum is divergent.
+
if <span class="texhtml">ω</span> = <span class="texhtml">ω<sub>0</sub></span> then the exponential is always 1 and the sum is divergent.  
  
instead of finding the DTFT of a complex exponential it is easier to make an educated guess for what <math>X(\omega)</math> is and checking to see if the equation holds and the initial guess is  
+
instead of finding the DTFT of a complex exponential it is easier to make an educated guess for what <span class="texhtml">''X''(ω)</span> is and checking to see if the equation holds and the initial guess is  
  
<math>2\pi\delta(\omega-\omega_0)</math>
+
<span class="texhtml">2πδ(ω − ω<sub>0</sub>)</span>  
  
given that <math>\omega</math> is periodic, as seen above, <math>\omega</math> is between 0 and <math>2\pi</math>
+
given that <span class="texhtml">ω</span> is periodic, as seen above, <span class="texhtml">ω</span> is between 0 and <span class="texhtml"></span>  
  
in the iDTFT the replacement looks like
+
in the iDTFT the replacement looks like  
  
<math>\frac{1}{2\pi}\int\limits_{-\pi}^{\pi} {\color{blue}2\pi\delta(\omega-\omega_0)}e^{j\omega n}d\omega </math>
+
<math>\frac{1}{2\pi}\int\limits_{-\pi}^{\pi} {\color{blue}2\pi\delta(\omega-\omega_0)}e^{j\omega n}d\omega </math>  
  
Because integration is a sum of infinitely small parts and delta functions are only equal to 1 at a distinct value the integration becomes the value of the equation at the delta offset point which is <math>\omega = \omega_0</math> so
+
Because integration is a sum of infinitely small parts and delta functions are only equal to 1 at a distinct value the integration becomes the value of the equation at the delta offset point which is <span class="texhtml">ω = ω<sub>0</sub></span> so  
  
<math>x[n] = {color{red}\frac{1}{2\pi}2\pi\delta(\omega_0}-\omega_0)}e^{j\omega_0 n} </math>
+
<math>x[n] = {\color{red}\frac{1}{2\pi}2\pi\delta(\omega_0-\omega_0)}e^{j\omega_0 n} </math>  
  
 
which simplifies to  
 
which simplifies to  
  
<math>x[n] = e^{j\omega_0 n}</math>
+
<math>x[n] = e^{j\omega_0 n}</math>  
 +
 
 +
since the iDTFT reproduces the DTFT then the DTFT of x[n] is <span class="texhtml">2πδ(ω − ω<sub>0</sub>)</span>
 +
 
 
----
 
----
 +
 
----
 
----
 +
 
----
 
----
(create a question page and put a link below)
+
== [[Holtman_Slecture_Review|Questions and comments]] ==
==[[slecture_title_of_slecture_review|Questions and comments]]==
+
 
 +
If you have any questions, comments, etc. please post them on [[Holtman_Slecture_Review|this page]].
  
If you have any questions, comments, etc. please post them on [[slecture_title_of_slecture_review|this page]].
 
 
----
 
----
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
+
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]
 +
 
 +
[[Category:Slecture]] [[Category:ECE438Fall2014Boutin]] [[Category:ECE]] [[Category:ECE438]] [[Category:Signal_processing]] [[Category:Discrete-time_Fourier_transform]]

Latest revision as of 20:02, 16 March 2015


Discrete-time Fourier Transform with Example

A slecture by ECE student Jacob Holtman

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



Definition of Discrete Time Fourier Transform (DTFT)

$ X(\omega) = \sum_{k=-\infty}^{\infty}x[n]e^{-j\omega k} $


Definition of Inverse Discrete Time Fourier Transform (iDTFT)

$ x[n] = \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega $


X(ω) is seen to be periodic with a period of to see this ω is replaced with ω + 2kπ where k is an integer

$ X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j({\color{blue}\omega + 2k\pi})n} $

Using the multiplicative rule of exponential the ω and 2kπ are split into two different exponential

$ X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]{\color{red}e^{-j\omega n}}{\color{blue}e^{2k\pi n}} $

given that n and k are integers k and so ej2kπn = 1 for all k, from Euler's identity and so

$ X(\omega + 2k\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = X(\omega) $

so X(ω + 2kπ) = X(ω) for all ω


to find the DTFT of a complex exponential

$ x[n] = e^{j\omega_0 n} $

The first step is to replace x[n] with the exponential in the DTFT equation

$ X(\omega) = \sum_{n=-\infty}^{\infty}{\color{blue}e^{j\omega_0 n}}e^{-j\omega n} $

if ω = ω0 then the exponential is always 1 and the sum is divergent.

instead of finding the DTFT of a complex exponential it is easier to make an educated guess for what X(ω) is and checking to see if the equation holds and the initial guess is

2πδ(ω − ω0)

given that ω is periodic, as seen above, ω is between 0 and

in the iDTFT the replacement looks like

$ \frac{1}{2\pi}\int\limits_{-\pi}^{\pi} {\color{blue}2\pi\delta(\omega-\omega_0)}e^{j\omega n}d\omega $

Because integration is a sum of infinitely small parts and delta functions are only equal to 1 at a distinct value the integration becomes the value of the equation at the delta offset point which is ω = ω0 so

$ x[n] = {\color{red}\frac{1}{2\pi}2\pi\delta(\omega_0-\omega_0)}e^{j\omega_0 n} $

which simplifies to

$ x[n] = e^{j\omega_0 n} $

since the iDTFT reproduces the DTFT then the DTFT of x[n] is 2πδ(ω − ω0)




Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin